#include "picoc.h" static int Blobcnt, Blobx1, Blobx2, Bloby1, Bloby2, Iy1, Iy2, Iu1, Iu2, Iv1, Iv2; static int GPSlatdeg, GPSlatmin, GPSlondeg, GPSlonmin, GPSalt, GPSfix, GPSsat, GPSutc; void PlatformLibraryInit() { VariableDefinePlatformVar(NULL, "blobcnt", &IntType, (union AnyValue *)&Blobcnt, FALSE); VariableDefinePlatformVar(NULL, "blobx1", &IntType, (union AnyValue *)&Blobx1, FALSE); VariableDefinePlatformVar(NULL, "blobx2", &IntType, (union AnyValue *)&Blobx2, FALSE); VariableDefinePlatformVar(NULL, "bloby1", &IntType, (union AnyValue *)&Bloby1, FALSE); VariableDefinePlatformVar(NULL, "bloby2", &IntType, (union AnyValue *)&Bloby2, FALSE); VariableDefinePlatformVar(NULL, "y1", &IntType, (union AnyValue *)&Iy1, FALSE); VariableDefinePlatformVar(NULL, "y2", &IntType, (union AnyValue *)&Iy2, FALSE); VariableDefinePlatformVar(NULL, "u1", &IntType, (union AnyValue *)&Iu1, FALSE); VariableDefinePlatformVar(NULL, "u2", &IntType, (union AnyValue *)&Iu2, FALSE); VariableDefinePlatformVar(NULL, "v1", &IntType, (union AnyValue *)&Iv1, FALSE); VariableDefinePlatformVar(NULL, "v2", &IntType, (union AnyValue *)&Iv2, FALSE); VariableDefinePlatformVar(NULL, "gpslatdeg", &IntType, (union AnyValue *)&GPSlatdeg, FALSE); VariableDefinePlatformVar(NULL, "gpslatmin", &IntType, (union AnyValue *)&GPSlatmin, FALSE); VariableDefinePlatformVar(NULL, "gpslondeg", &IntType, (union AnyValue *)&GPSlondeg, FALSE); VariableDefinePlatformVar(NULL, "gpslonmin", &IntType, (union AnyValue *)&GPSlonmin, FALSE); VariableDefinePlatformVar(NULL, "gpsalt", &IntType, (union AnyValue *)&GPSalt, FALSE); VariableDefinePlatformVar(NULL, "gpsfix", &IntType, (union AnyValue *)&GPSfix, FALSE); VariableDefinePlatformVar(NULL, "gpssat", &IntType, (union AnyValue *)&GPSsat, FALSE); VariableDefinePlatformVar(NULL, "gpsutc", &IntType, (union AnyValue *)&GPSutc, FALSE); } void Csignal(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // check for kbhit, return t or nil { unsigned char ch; if (getchar(&ch)) ReturnValue->Val->Integer = 1; else ReturnValue->Val->Integer = 0; } void Cinput(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // return 0-9 from console input { ReturnValue->Val->Integer = getch() & 0x0F; } void Cdelay(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { int del; del = Param[0]->Val->Integer; if ((del < 0) || (del > 1000000)) return; delayMS(del); } void Crand(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { ReturnValue->Val->Integer = (int)rand() % (unsigned int)(Param[0]->Val->Integer + 1); } void Ctime(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { ReturnValue->Val->Integer = (int)readRTC(); } void Ciodir(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { int dir; dir = Param[0]->Val->Integer; *pPORTHIO_DIR = ((dir << 10) & 0xFC00) + (*pPORTHIO_DIR & 0x03FF); // H15/14/13/12/11/10 - 1=output, 0=input *pPORTHIO_INEN = (((~dir) << 10) & 0xFC00) + (*pPORTHIO_INEN & 0x03FF); // invert dir bits to enable inputs } void Cioread(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { ReturnValue->Val->Integer = (*pPORTHIO >> 10) & 0x003F; } void Ciowrite(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { *pPORTHIO = ((Param[0]->Val->Integer << 10) & 0xFC00) + (*pPORTHIO & 0x03FF); } void Cpeek(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { int size, ptr; unsigned char *cp; unsigned short *sp; unsigned int *ip; /* x = peek(addr, size); mask ptr to align with word size */ ptr = Param[0]->Val->Integer; size = Param[1]->Val->Integer; switch (size) { case 1: // char * cp = (unsigned char *)ptr; ReturnValue->Val->Integer = (int)((unsigned int)*cp); break; case 2: // short * sp = (unsigned short *)(ptr & 0xFFFFFFFE); // align with even boundary ReturnValue->Val->Integer = (int)((unsigned short)*sp); break; case 4: // int * ip = (unsigned int *)(ptr & 0xFFFFFFFC); // aling with quad boundary ReturnValue->Val->Integer = (int)*ip; break; default: ReturnValue->Val->Integer = 0; break; } } void Cpoke(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { int size, ptr, val; unsigned char *cp; unsigned short *sp; unsigned int *ip; /* x = poke(addr, size, val); mask ptr to align with word size */ ptr = Param[0]->Val->Integer; size = Param[1]->Val->Integer; val = Param[2]->Val->Integer; switch (size) { case 1: // char * cp = (unsigned char *)ptr; *cp = (unsigned char)(val & 0x000000FF); break; case 2: // short * sp = (unsigned short *)(ptr & 0xFFFFFFFE); *sp = (unsigned short)(val & 0x0000FFFF); break; case 4: // int * ip = (unsigned int *)(ptr & 0xFFFFFFFC); *ip = val; break; default: // don't bother with bad value break; } } void Cmotors(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { lspeed = Param[0]->Val->Integer; if ((lspeed < -100) || (lspeed > 100)) ProgramFail(NULL, "motors(): left motor value out of range"); rspeed = Param[1]->Val->Integer; if ((rspeed < -100) || (rspeed > 100)) ProgramFail(NULL, "motors(): right motor value out of range"); if (!pwm1_init) { initPWM(); pwm1_init = 1; pwm1_mode = PWM_PWM; base_speed = 50; } setPWM(lspeed, rspeed); } void Cmotors2(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { lspeed2 = Param[0]->Val->Integer; if ((lspeed2 < -100) || (lspeed2 > 100)) ProgramFail(NULL, "motors2(): left motor value out of range"); rspeed2 = Param[1]->Val->Integer; if ((rspeed2 < -100) || (rspeed2 > 100)) ProgramFail(NULL, "motors2(): right motor value out of range"); if (!pwm2_init) { initPWM2(); pwm2_init = 1; pwm2_mode = PWM_PWM; base_speed2 = 50; } setPWM2(lspeed2, rspeed2); } void Cservos(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { int lspeed, rspeed; lspeed = Param[0]->Val->Integer; if ((lspeed < 0) || (lspeed > 100)) ProgramFail(NULL, "servos(): TMR2 value out of range"); rspeed = Param[1]->Val->Integer; if ((rspeed < 0) || (rspeed > 100)) ProgramFail(NULL, "servos()(): TMR3 value out of range"); if (!pwm1_init) { initPPM1(); pwm1_init = 1; pwm1_mode = PWM_PPM; } setPPM1(lspeed, rspeed); } void Cservos2(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { int lspeed, rspeed; lspeed = Param[0]->Val->Integer; if ((lspeed < 0) || (lspeed > 100)) ProgramFail(NULL, "servos2(): TMR6 value out of range"); rspeed = Param[1]->Val->Integer; if ((rspeed < 0) || (rspeed > 100)) ProgramFail(NULL, "servos2(): TMR7 value out of range"); if (!pwm2_init) { initPPM2(); pwm2_init = 1; pwm2_mode = PWM_PPM; } setPPM2(lspeed, rspeed); } void Claser(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // laser(1) turns them on, laser(0) turns them off { *pPORTHIO &= 0xFD7F; // turn off both lasers switch (Param[0]->Val->Integer) { case 1: *pPORTHIO |= 0x0080; // turn on left laser break; case 2: *pPORTHIO |= 0x0200; // turn on right laser break; case 3: *pPORTHIO |= 0x0280; // turn on both lasers break; } } void Csonar(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // read sonar module { unsigned int i; i = Param[0]->Val->Integer; if ((i<1) || (i>4)) { ProgramFail(NULL, "sonar(): 1, 2, 3, 4 are only valid selections"); } sonar(); ReturnValue->Val->Integer = sonar_data[i] / 100; } void Crange(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { ReturnValue->Val->Integer = laser_range(0); } void Cbattery(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { if (*pPORTHIO & 0x0004) ReturnValue->Val->Integer = 0; // low battery voltage detected else ReturnValue->Val->Integer = 1; // battery voltage okay } void Cvcolor(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // set color bin - // vcolor (color, ymin, ymax, umin, umax, vmin, vmax); { int ix; ix = Param[0]->Val->Integer; ymin[ix] = Param[1]->Val->Integer; ymax[ix] = Param[2]->Val->Integer; umin[ix] = Param[3]->Val->Integer; umax[ix] = Param[4]->Val->Integer; vmin[ix] = Param[5]->Val->Integer; vmax[ix] = Param[6]->Val->Integer; } void Cvcap(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { grab_frame(); // capture frame for processing } void Cvrcap(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { grab_reference_frame(); // capture reference frame for differencing } void Cvdiff(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { frame_diff_flag = Param[0]->Val->Integer; // set/clear frame_diff_flag } void Cvpix(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { int x, y, ix; x = Param[0]->Val->Integer; y = Param[1]->Val->Integer; ix = vpix((unsigned char *)FRAME_BUF, x, y); Iy1 = ((ix>>16) & 0x000000FF); // Y1 Iu1 = ((ix>>24) & 0x000000FF); // U Iv1 = ((ix>>8) & 0x000000FF); // V } void Cvmean(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { vmean((unsigned char *)FRAME_BUF); Iy1 = mean[0]; Iu1 = mean[1]; Iv1 = mean[2]; } // search for blob by color, index; return center point X,Y and width Z void Cvblob(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { int ix, iblob, numblob; ix = Param[0]->Val->Integer; if (ix > MAX_COLORS) ProgramFail(NULL, "blob(): invalid color index"); iblob = Param[1]->Val->Integer; if (iblob > MAX_BLOBS) ProgramFail(NULL, "blob(): invalid blob index"); numblob = vblob((unsigned char *)FRAME_BUF, (unsigned char *)FRAME_BUF3, ix); if (blobcnt[iblob] == 0) { Blobcnt = 0; } else { Blobcnt = blobcnt[iblob]; Blobx1 = blobx1[iblob]; Blobx2 = blobx2[iblob]; Bloby1 = bloby1[iblob]; Bloby2 = bloby2[iblob]; } ReturnValue->Val->Integer = numblob; } void Ccompass(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // return reading from HMC6352 I2C compass { unsigned char i2c_data[2]; unsigned int ix; i2c_data[0] = 0x41; // read compass twice to clear last reading i2cread(0x22, (unsigned char *)i2c_data, 2, SCCB_ON); delayMS(10); i2c_data[0] = 0x41; i2cread(0x22, (unsigned char *)i2c_data, 2, SCCB_ON); ix = ((i2c_data[0] << 8) + i2c_data[1]) / 10; ReturnValue->Val->Integer = ix; } void Canalog(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // return reading from HMC6352 I2C compass { unsigned char i2c_data[3], device_id; unsigned int ix, channel; unsigned char mask1[] = { 0x00, 0x00, 0x00, 0x00, 0x01, 0x02, 0x04, 0x08 }; unsigned char mask2[] = { 0x10, 0x20, 0x40, 0x80, 0x00, 0x00, 0x00, 0x00 }; // decide which i2c device based on channel range ix = (unsigned char)Param[0]->Val->Integer; if ((ix<1) || (ix>28)) ProgramFail(NULL, "analog(): invalid channel"); device_id = 0; switch (ix / 10) { case 0: device_id = 0x20; // channels 1-8 break; case 1: device_id = 0x23; // channels 11-18 break; case 2: device_id = 0x24; // channels 21-28 break; } channel = ix % 10; if ((channel<1) || (channel>8)) ProgramFail(NULL, "analog(): invalid channel"); // set timer register 3 i2c_data[0] = 0x03; i2c_data[1] = 0x01; i2cwrite(device_id, (unsigned char *)i2c_data, 1, SCCB_ON); // set analog channel i2c_data[0] = 0x02; i2c_data[1] = mask1[channel-1]; i2c_data[2] = mask2[channel-1]; i2cwritex(device_id, (unsigned char *)i2c_data, 3, SCCB_ON); // small delay delayUS(1000); // read data i2c_data[0] = 0x00; i2cread(device_id, (unsigned char *)i2c_data, 2, SCCB_ON); ix = (((i2c_data[0] & 0x0F) << 8) + i2c_data[1]); ReturnValue->Val->Integer = ix; } void Cgps(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { gps_parse(); GPSlatdeg = gps_gga.latdeg; GPSlatmin = gps_gga.latmin; GPSlondeg = gps_gga.londeg; GPSlonmin = gps_gga.lonmin; GPSalt = gps_gga.alt; GPSfix = gps_gga.fix; GPSsat = gps_gga.sat; GPSutc = gps_gga.utc; } void Creadi2c(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // syntax val = readi2c(device, register); { unsigned char i2c_device, i2c_data[2]; i2c_device = (unsigned char)Param[0]->Val->Integer; i2c_data[0] = (unsigned char)Param[1]->Val->Integer; i2cread(i2c_device, (unsigned char *)i2c_data, 1, SCCB_OFF); ReturnValue->Val->Integer = ((int)i2c_data[0] & 0x000000FF); } void Creadi2c2(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // syntax two_byte_val = readi2c(device, register); { unsigned char i2c_device, i2c_data[2]; i2c_device = (unsigned char)Param[0]->Val->Integer; i2c_data[0] = (unsigned char)Param[1]->Val->Integer; i2cread(i2c_device, (unsigned char *)i2c_data, 2, SCCB_OFF); ReturnValue->Val->Integer = (((unsigned int)i2c_data[0] << 8) + i2c_data[1]); } void Cwritei2c(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // syntax writei2c(device, register, value); { unsigned char i2c_device, i2c_data[2]; i2c_device = (unsigned char)Param[0]->Val->Integer; i2c_data[0] = (unsigned char)Param[1]->Val->Integer; i2c_data[1] = (unsigned char)Param[2]->Val->Integer; i2cwrite(i2c_device, (unsigned char *)i2c_data, 1, SCCB_OFF); } static int cosine[] = { 10000, 9998, 9994, 9986, 9976, 9962, 9945, 9925, 9903, 9877, 9848, 9816, 9781, 9744, 9703, 9659, 9613, 9563, 9511, 9455, 9397, 9336, 9272, 9205, 9135, 9063, 8988, 8910, 8829, 8746, 8660, 8572, 8480, 8387, 8290, 8192, 8090, 7986, 7880, 7771, 7660, 7547, 7431, 7314, 7193, 7071, 6947, 6820, 6691, 6561, 6428, 6293, 6157, 6018, 5878, 5736, 5592, 5446, 5299, 5150, 5000, 4848, 4695, 4540, 4384, 4226, 4067, 3907, 3746, 3584, 3420, 3256, 3090, 2924, 2756, 2588, 2419, 2250, 2079, 1908, 1736, 1564, 1392, 1219, 1045, 872, 698, 523, 349, 175, 0 }; void Csin(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // sin(angle) { int ix; ix = Param[0]->Val->Integer; // input to function is angle in degrees while (ix < 0) ix = ix + 360; while (ix >= 360) ix = ix - 360; if (ix < 90) { ReturnValue->Val->Integer = cosine[90-ix] / 100; return; } if (ix < 180) { ReturnValue->Val->Integer = cosine[ix-90] / 100; return; } if (ix < 270) { ReturnValue->Val->Integer = -cosine[270-ix] / 100; return; } if (ix < 360) { ReturnValue->Val->Integer = -cosine[ix-270] / 100; return; } } void Ccos(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // cos(angle) { int ix; ix = Param[0]->Val->Integer; // input to function is angle in degrees while (ix < 0) ix = ix + 360; while (ix >= 360) ix = ix - 360; if (ix < 90) { ReturnValue->Val->Integer = cosine[ix] / 100; return; } if (ix < 180) { ReturnValue->Val->Integer = -cosine[180-ix] / 100; return; } if (ix < 270) { ReturnValue->Val->Integer = -cosine[ix-180] / 100; return; } if (ix < 360) { ReturnValue->Val->Integer = cosine[360-ix] / 100; return; } } void Ctan(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // tan(angle) { int ix; ix = Param[0]->Val->Integer; // input to function is angle in degrees while (ix < 0) ix = ix + 360; while (ix >= 360) ix = ix - 360; if (ix == 90) { ReturnValue->Val->Integer = 9999; return; } if (ix == 270) { ReturnValue->Val->Integer = -9999; return; } if (ix < 90) { ReturnValue->Val->Integer = (100 * cosine[90-ix]) / cosine[ix]; return; } if (ix < 180) { ReturnValue->Val->Integer = -(100 * cosine[ix-90]) / cosine[180-ix]; return; } if (ix < 270) { ReturnValue->Val->Integer = (100 * cosine[270-ix]) / cosine[ix-180]; return; } if (ix < 360) { ReturnValue->Val->Integer = -(100 * cosine[ix-270]) / cosine[360-ix]; return; } } void Casin(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // asin(y,hyp) { int y, hyp, quot, sgn, ix; y = Param[0]->Val->Integer; hyp = Param[1]->Val->Integer; if (y > hyp) ProgramFail(NULL, "asin(): opposite greater than hypotenuse"); if (y == 0) { ReturnValue->Val->Integer = 0; return; } sgn = hyp * y; if (hyp < 0) hyp = -hyp; if (y < 0) y = -y; quot = (y * 10000) / hyp; if (quot > 9999) quot = 9999; for (ix=0; ix<90; ix++) if ((quot < cosine[ix]) && (quot >= cosine[ix+1])) break; if (sgn < 0) ReturnValue->Val->Integer = -(90-ix); else ReturnValue->Val->Integer = 90-ix; } void Cacos(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // acos(x,hyp) { int x, hyp, quot, sgn, ix; x = Param[0]->Val->Integer; hyp = Param[1]->Val->Integer; if (x > hyp) ProgramFail(NULL, "acos(): adjacent greater than hypotenuse"); if (x == 0) { if (hyp < 0) ReturnValue->Val->Integer = -90; else ReturnValue->Val->Integer = 90; return; } sgn = hyp * x; if (hyp < 0) hyp = -hyp; if (x < 0) x = -x; quot = (x * 10000) / hyp; if (quot > 9999) quot = 9999; for (ix=0; ix<90; ix++) if ((quot < cosine[ix]) && (quot >= cosine[ix+1])) break; if (sgn < 0) ReturnValue->Val->Integer = -ix; else ReturnValue->Val->Integer = ix; } void Catan(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // atan(y,x) { int x,y, angle, coeff_1, coeff_2, r; y = Param[0]->Val->Integer; x = Param[1]->Val->Integer; if (x == 0) { if (y >= 0) ReturnValue->Val->Integer = 90; else ReturnValue->Val->Integer = -90; return; } coeff_1 = 3141/4; coeff_2 = coeff_1*3; if (y < 0) y = -y; if (x >= 0) { r = (x - y)*1000 / (x + y); angle = (coeff_1*1000 - coeff_1 * r); } else { r = (x + y)*1000 / (y - x); angle = (coeff_2*1000 - coeff_1 * r); } angle = angle*57/1000000; if (y < 0) ReturnValue->Val->Integer = -angle; else ReturnValue->Val->Integer = angle; } void Cnnset(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { int ix, i1; ix = Param[0]->Val->Integer; if (ix > NUM_NPATTERNS) ProgramFail(NULL, "nnset(): invalid index"); for (i1=0; i1<8; i1++) npattern[ix*8 + i1] = (unsigned char)Param[i1+1]->Val->Integer; } void Cnnshow(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { int ix; ix = Param[0]->Val->Integer; if (ix > NUM_NPATTERNS) ProgramFail(NULL, "nnshow(): invalid index"); nndisplay(ix); } void Cnninit(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { nninit_network(); } void Cnntrain(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) { int ix, i1; nntrain_network(10000); for (ix=0; ixVal->Integer; for (i2=0; i2<8; i2++) { if (ch & nmask[i2]) N_IN(ix++) = 1024; else N_IN(ix++) = 0; } } nncalculate_network(); for (i1=0; i1Val->Integer; if (ix > MAX_BLOBS) ProgramFail(NULL, "nnmatchblob(): invalid blob index"); if (!blobcnt[ix]) ProgramFail(NULL, "nnmatchblob(): not a valid blob"); /* use data still in blob_buf[] (FRAME_BUF3) square the aspect ratio of x1, x2, y1, y2 then subsample blob pixels to populate N_IN(0:63) with 0:1024 values then nncalculate_network() and display the N_OUT() results */ nnscale8x8((unsigned char *)FRAME_BUF3, blobix[ix], blobx1[ix], blobx2[ix], bloby1[ix], bloby2[ix], imgWidth, imgHeight); nncalculate_network(); for (i1=0; i1Val->Integer; if (ix > NUM_NPATTERNS) ProgramFail(NULL, "nnlearnblob(): invalid index"); if (!blobcnt[0]) ProgramFail(NULL, "nnlearnblob(): no blob to grab"); nnscale8x8((unsigned char *)FRAME_BUF3, blobix[0], blobx1[0], blobx2[0], bloby1[0], bloby2[0], imgWidth, imgHeight); nnpack8x8(ix); nndisplay(ix); } /* list of all library functions and their prototypes */ struct LibraryFunction PlatformLibrary[] = { { Csignal, "int signal()" }, { Cinput, "int input()" }, { Cdelay, "void delay(int)" }, { Crand, "int rand(int)" }, { Ctime, "int time()" }, { Ciodir, "void iodir(int)" }, { Cioread, "int ioread()" }, { Ciowrite, "void iowrite(int)" }, { Cpeek, "int peek(int, int)" }, { Cpoke, "void poke(int, int, int)" }, { Cmotors, "void motors(int, int)" }, { Cmotors2, "void motors2(int, int)" }, { Cservos, "void servos(int, int)" }, { Cservos2, "void servos2(int, int)" }, { Claser, "void laser(int)" }, { Csonar, "int sonar(int)" }, { Crange, "int range()" }, { Cbattery, "int battery()" }, { Cvcolor, "void vcolor(int, int, int, int, int, int, int)" }, { Cvcap, "void vcap()" }, { Cvrcap, "void vrcap()" }, { Cvdiff, "void vdiff(int)" }, { Cvpix, "void vpix(int, int)" }, { Cvmean, "void vmean()" }, { Cvblob, "int vblob(int, int)" }, { Ccompass, "int compass()" }, { Canalog, "int analog(int)" }, { Cgps, "void gps()" }, { Creadi2c, "int readi2c(int, int)" }, { Creadi2c2, "int readi2c2(int, int)" }, { Cwritei2c, "void writei2c(int, int, int)" }, { Csin, "int sin(int)" }, { Ccos, "int cos(int)" }, { Ctan, "int tan(int)" }, { Casin, "int asin(int, int)" }, { Cacos, "int acos(int, int)" }, { Catan, "int atan(int, int)" }, { Cnnshow, "void nnshow(int)" }, { Cnnset, "void nnset(int, int, int, int, int, int, int, int, int)" }, { Cnninit, "void nninit()" }, { Cnntrain, "void nntrain()" }, { Cnntest, "void nntest(int, int, int, int, int, int, int, int)" }, { Cnnmatchblob, "void nnmatchblob(int)" }, { Cnnlearnblob, "void nnlearnblob(int)" }, { NULL, NULL } };