Added software floating point library. Not integrated yet.
git-svn-id: http://picoc.googlecode.com/svn/trunk@302 21eae674-98b7-11dd-bd71-f92a316d2d60
This commit is contained in:
parent
a99af94f38
commit
ef5d729bd8
68
softfloat/386-GCC.h
Normal file
68
softfloat/386-GCC.h
Normal file
|
@ -0,0 +1,68 @@
|
|||
|
||||
/*----------------------------------------------------------------------------
|
||||
| One of the macros `BIGENDIAN' or `LITTLEENDIAN' must be defined.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define LITTLEENDIAN
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The macro `BITS64' can be defined to indicate that 64-bit integer types are
|
||||
| supported by the compiler.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define BITS64
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Each of the following `typedef's defines the most convenient type that holds
|
||||
| integers of at least as many bits as specified. For example, `uint8' should
|
||||
| be the most convenient type that can hold unsigned integers of as many as
|
||||
| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
|
||||
| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
|
||||
| to the same as `int'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
typedef char flag;
|
||||
typedef unsigned char uint8;
|
||||
typedef signed char int8;
|
||||
typedef int uint16;
|
||||
typedef int int16;
|
||||
typedef unsigned int uint32;
|
||||
typedef signed int int32;
|
||||
#ifdef BITS64
|
||||
typedef unsigned long long int uint64;
|
||||
typedef signed long long int int64;
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Each of the following `typedef's defines a type that holds integers
|
||||
| of _exactly_ the number of bits specified. For instance, for most
|
||||
| implementation of C, `bits16' and `sbits16' should be `typedef'ed to
|
||||
| `unsigned short int' and `signed short int' (or `short int'), respectively.
|
||||
*----------------------------------------------------------------------------*/
|
||||
typedef unsigned char bits8;
|
||||
typedef signed char sbits8;
|
||||
typedef unsigned short int bits16;
|
||||
typedef signed short int sbits16;
|
||||
typedef unsigned int bits32;
|
||||
typedef signed int sbits32;
|
||||
#ifdef BITS64
|
||||
typedef unsigned long long int bits64;
|
||||
typedef signed long long int sbits64;
|
||||
#endif
|
||||
|
||||
#ifdef BITS64
|
||||
/*----------------------------------------------------------------------------
|
||||
| The `LIT64' macro takes as its argument a textual integer literal and
|
||||
| if necessary ``marks'' the literal as having a 64-bit integer type.
|
||||
| For example, the GNU C Compiler (`gcc') requires that 64-bit literals be
|
||||
| appended with the letters `LL' standing for `long long', which is `gcc's
|
||||
| name for the 64-bit integer type. Some compilers may allow `LIT64' to be
|
||||
| defined as the identity macro: `#define LIT64( a ) a'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define LIT64( a ) a##LL
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The macro `INLINE' can be used before functions that should be inlined. If
|
||||
| a compiler does not support explicit inlining, this macro should be defined
|
||||
| to be `static'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define INLINE extern inline
|
||||
|
24
softfloat/386-Win32-GCC/Makefile
Normal file
24
softfloat/386-Win32-GCC/Makefile
Normal file
|
@ -0,0 +1,24 @@
|
|||
|
||||
PROCESSOR_H = ../../../processors/386-GCC.h
|
||||
SOFTFLOAT_MACROS = ../softfloat-macros
|
||||
|
||||
OBJ = .o
|
||||
EXE = .exe
|
||||
INCLUDES = -I. -I..
|
||||
COMPILE_C = gcc -c -o $@ $(INCLUDES) -I- -O2
|
||||
LINK = gcc -o $@
|
||||
|
||||
ALL: softfloat$(OBJ) timesoftfloat$(EXE)
|
||||
|
||||
milieu.h: $(PROCESSOR_H)
|
||||
touch milieu.h
|
||||
|
||||
softfloat$(OBJ): milieu.h softfloat.h softfloat-specialize $(SOFTFLOAT_MACROS) ../softfloat.c
|
||||
$(COMPILE_C) ../softfloat.c
|
||||
|
||||
timesoftfloat$(OBJ): milieu.h softfloat.h ../timesoftfloat.c
|
||||
$(COMPILE_C) ../timesoftfloat.c
|
||||
|
||||
timesoftfloat$(EXE): softfloat$(OBJ) timesoftfloat$(OBJ)
|
||||
$(LINK) softfloat$(OBJ) timesoftfloat$(OBJ)
|
||||
|
45
softfloat/386-Win32-GCC/milieu.h
Normal file
45
softfloat/386-Win32-GCC/milieu.h
Normal file
|
@ -0,0 +1,45 @@
|
|||
|
||||
/*============================================================================
|
||||
|
||||
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
|
||||
Package, Release 2b.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
||||
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
||||
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
||||
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
||||
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
||||
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
||||
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) the source code for the derivative work includes prominent notice that
|
||||
the work is derivative, and (2) the source code includes prominent notice with
|
||||
these four paragraphs for those parts of this code that are retained.
|
||||
|
||||
=============================================================================*/
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Include common integer types and flags.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#include "../../../processors/386-GCC.h"
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Symbolic Boolean literals.
|
||||
*----------------------------------------------------------------------------*/
|
||||
enum {
|
||||
FALSE = 0,
|
||||
TRUE = 1
|
||||
};
|
||||
|
464
softfloat/386-Win32-GCC/softfloat-specialize
Normal file
464
softfloat/386-Win32-GCC/softfloat-specialize
Normal file
|
@ -0,0 +1,464 @@
|
|||
|
||||
/*============================================================================
|
||||
|
||||
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2b.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
||||
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
||||
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
||||
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
||||
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
||||
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
||||
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) the source code for the derivative work includes prominent notice that
|
||||
the work is derivative, and (2) the source code includes prominent notice with
|
||||
these four paragraphs for those parts of this code that are retained.
|
||||
|
||||
=============================================================================*/
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Underflow tininess-detection mode, statically initialized to default value.
|
||||
| (The declaration in `softfloat.h' must match the `int8' type here.)
|
||||
*----------------------------------------------------------------------------*/
|
||||
int8 float_detect_tininess = float_tininess_after_rounding;
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Raises the exceptions specified by `flags'. Floating-point traps can be
|
||||
| defined here if desired. It is currently not possible for such a trap
|
||||
| to substitute a result value. If traps are not implemented, this routine
|
||||
| should be simply `float_exception_flags |= flags;'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
void float_raise( int8 flags )
|
||||
{
|
||||
|
||||
float_exception_flags |= flags;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Internal canonical NaN format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
typedef struct {
|
||||
flag sign;
|
||||
bits64 high, low;
|
||||
} commonNaNT;
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated single-precision NaN.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define float32_default_nan 0xFFC00000
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the single-precision floating-point value `a' is a NaN;
|
||||
| otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float32_is_nan( float32 a )
|
||||
{
|
||||
|
||||
return ( 0xFF000000 < (bits32) ( a<<1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the single-precision floating-point value `a' is a signaling
|
||||
| NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float32_is_signaling_nan( float32 a )
|
||||
{
|
||||
|
||||
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the single-precision floating-point NaN
|
||||
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
| exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static commonNaNT float32ToCommonNaN( float32 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a>>31;
|
||||
z.low = 0;
|
||||
z.high = ( (bits64) a )<<41;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the canonical NaN `a' to the single-
|
||||
| precision floating-point format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float32 commonNaNToFloat32( commonNaNT a )
|
||||
{
|
||||
|
||||
return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes two single-precision floating-point values `a' and `b', one of which
|
||||
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
||||
| signaling NaN, the invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float32 propagateFloat32NaN( float32 a, float32 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float32_is_nan( a );
|
||||
aIsSignalingNaN = float32_is_signaling_nan( a );
|
||||
bIsNaN = float32_is_nan( b );
|
||||
bIsSignalingNaN = float32_is_signaling_nan( b );
|
||||
a |= 0x00400000;
|
||||
b |= 0x00400000;
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsSignalingNaN ) {
|
||||
if ( bIsSignalingNaN ) goto returnLargerSignificand;
|
||||
return bIsNaN ? b : a;
|
||||
}
|
||||
else if ( aIsNaN ) {
|
||||
if ( bIsSignalingNaN | ! bIsNaN ) return a;
|
||||
returnLargerSignificand:
|
||||
if ( (bits32) ( a<<1 ) < (bits32) ( b<<1 ) ) return b;
|
||||
if ( (bits32) ( b<<1 ) < (bits32) ( a<<1 ) ) return a;
|
||||
return ( a < b ) ? a : b;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated double-precision NaN.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define float64_default_nan LIT64( 0xFFF8000000000000 )
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the double-precision floating-point value `a' is a NaN;
|
||||
| otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float64_is_nan( float64 a )
|
||||
{
|
||||
|
||||
return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the double-precision floating-point value `a' is a signaling
|
||||
| NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float64_is_signaling_nan( float64 a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
|
||||
&& ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the double-precision floating-point NaN
|
||||
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
| exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static commonNaNT float64ToCommonNaN( float64 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a>>63;
|
||||
z.low = 0;
|
||||
z.high = a<<12;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the canonical NaN `a' to the double-
|
||||
| precision floating-point format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float64 commonNaNToFloat64( commonNaNT a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( (bits64) a.sign )<<63 )
|
||||
| LIT64( 0x7FF8000000000000 )
|
||||
| ( a.high>>12 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes two double-precision floating-point values `a' and `b', one of which
|
||||
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
||||
| signaling NaN, the invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float64 propagateFloat64NaN( float64 a, float64 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float64_is_nan( a );
|
||||
aIsSignalingNaN = float64_is_signaling_nan( a );
|
||||
bIsNaN = float64_is_nan( b );
|
||||
bIsSignalingNaN = float64_is_signaling_nan( b );
|
||||
a |= LIT64( 0x0008000000000000 );
|
||||
b |= LIT64( 0x0008000000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsSignalingNaN ) {
|
||||
if ( bIsSignalingNaN ) goto returnLargerSignificand;
|
||||
return bIsNaN ? b : a;
|
||||
}
|
||||
else if ( aIsNaN ) {
|
||||
if ( bIsSignalingNaN | ! bIsNaN ) return a;
|
||||
returnLargerSignificand:
|
||||
if ( (bits64) ( a<<1 ) < (bits64) ( b<<1 ) ) return b;
|
||||
if ( (bits64) ( b<<1 ) < (bits64) ( a<<1 ) ) return a;
|
||||
return ( a < b ) ? a : b;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#ifdef FLOATX80
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated extended double-precision NaN. The
|
||||
| `high' and `low' values hold the most- and least-significant bits,
|
||||
| respectively.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define floatx80_default_nan_high 0xFFFF
|
||||
#define floatx80_default_nan_low LIT64( 0xC000000000000000 )
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the extended double-precision floating-point value `a' is a
|
||||
| NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag floatx80_is_nan( floatx80 a )
|
||||
{
|
||||
|
||||
return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the extended double-precision floating-point value `a' is a
|
||||
| signaling NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag floatx80_is_signaling_nan( floatx80 a )
|
||||
{
|
||||
bits64 aLow;
|
||||
|
||||
aLow = a.low & ~ LIT64( 0x4000000000000000 );
|
||||
return
|
||||
( ( a.high & 0x7FFF ) == 0x7FFF )
|
||||
&& (bits64) ( aLow<<1 )
|
||||
&& ( a.low == aLow );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the extended double-precision floating-
|
||||
| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
|
||||
| invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static commonNaNT floatx80ToCommonNaN( floatx80 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a.high>>15;
|
||||
z.low = 0;
|
||||
z.high = a.low<<1;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the canonical NaN `a' to the extended
|
||||
| double-precision floating-point format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static floatx80 commonNaNToFloatx80( commonNaNT a )
|
||||
{
|
||||
floatx80 z;
|
||||
|
||||
z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
|
||||
z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes two extended double-precision floating-point values `a' and `b', one
|
||||
| of which is a NaN, and returns the appropriate NaN result. If either `a' or
|
||||
| `b' is a signaling NaN, the invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = floatx80_is_nan( a );
|
||||
aIsSignalingNaN = floatx80_is_signaling_nan( a );
|
||||
bIsNaN = floatx80_is_nan( b );
|
||||
bIsSignalingNaN = floatx80_is_signaling_nan( b );
|
||||
a.low |= LIT64( 0xC000000000000000 );
|
||||
b.low |= LIT64( 0xC000000000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsSignalingNaN ) {
|
||||
if ( bIsSignalingNaN ) goto returnLargerSignificand;
|
||||
return bIsNaN ? b : a;
|
||||
}
|
||||
else if ( aIsNaN ) {
|
||||
if ( bIsSignalingNaN | ! bIsNaN ) return a;
|
||||
returnLargerSignificand:
|
||||
if ( a.low < b.low ) return b;
|
||||
if ( b.low < a.low ) return a;
|
||||
return ( a.high < b.high ) ? a : b;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef FLOAT128
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated quadruple-precision NaN. The `high' and
|
||||
| `low' values hold the most- and least-significant bits, respectively.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
|
||||
#define float128_default_nan_low LIT64( 0x0000000000000000 )
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
|
||||
| otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float128_is_nan( float128 a )
|
||||
{
|
||||
|
||||
return
|
||||
( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
|
||||
&& ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the quadruple-precision floating-point value `a' is a
|
||||
| signaling NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float128_is_signaling_nan( float128 a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
|
||||
&& ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the quadruple-precision floating-point NaN
|
||||
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
| exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static commonNaNT float128ToCommonNaN( float128 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a.high>>63;
|
||||
shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the canonical NaN `a' to the quadruple-
|
||||
| precision floating-point format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float128 commonNaNToFloat128( commonNaNT a )
|
||||
{
|
||||
float128 z;
|
||||
|
||||
shift128Right( a.high, a.low, 16, &z.high, &z.low );
|
||||
z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes two quadruple-precision floating-point values `a' and `b', one of
|
||||
| which is a NaN, and returns the appropriate NaN result. If either `a' or
|
||||
| `b' is a signaling NaN, the invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float128 propagateFloat128NaN( float128 a, float128 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float128_is_nan( a );
|
||||
aIsSignalingNaN = float128_is_signaling_nan( a );
|
||||
bIsNaN = float128_is_nan( b );
|
||||
bIsSignalingNaN = float128_is_signaling_nan( b );
|
||||
a.high |= LIT64( 0x0000800000000000 );
|
||||
b.high |= LIT64( 0x0000800000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsSignalingNaN ) {
|
||||
if ( bIsSignalingNaN ) goto returnLargerSignificand;
|
||||
return bIsNaN ? b : a;
|
||||
}
|
||||
else if ( aIsNaN ) {
|
||||
if ( bIsSignalingNaN | ! bIsNaN ) return a;
|
||||
returnLargerSignificand:
|
||||
if ( lt128( a.high<<1, a.low, b.high<<1, b.low ) ) return b;
|
||||
if ( lt128( b.high<<1, b.low, a.high<<1, a.low ) ) return a;
|
||||
return ( a.high < b.high ) ? a : b;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
259
softfloat/386-Win32-GCC/softfloat.h
Normal file
259
softfloat/386-Win32-GCC/softfloat.h
Normal file
|
@ -0,0 +1,259 @@
|
|||
|
||||
/*============================================================================
|
||||
|
||||
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
|
||||
Package, Release 2b.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
||||
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
||||
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
||||
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
||||
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
||||
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
||||
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) the source code for the derivative work includes prominent notice that
|
||||
the work is derivative, and (2) the source code includes prominent notice with
|
||||
these four paragraphs for those parts of this code that are retained.
|
||||
|
||||
=============================================================================*/
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The macro `FLOATX80' must be defined to enable the extended double-precision
|
||||
| floating-point format `floatx80'. If this macro is not defined, the
|
||||
| `floatx80' type will not be defined, and none of the functions that either
|
||||
| input or output the `floatx80' type will be defined. The same applies to
|
||||
| the `FLOAT128' macro and the quadruple-precision format `float128'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define FLOATX80
|
||||
#define FLOAT128
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point types.
|
||||
*----------------------------------------------------------------------------*/
|
||||
typedef unsigned int float32;
|
||||
typedef unsigned long long float64;
|
||||
#ifdef FLOATX80
|
||||
typedef struct {
|
||||
unsigned long long low;
|
||||
unsigned short high;
|
||||
} floatx80;
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
typedef struct {
|
||||
unsigned long long low, high;
|
||||
} float128;
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point underflow tininess-detection mode.
|
||||
*----------------------------------------------------------------------------*/
|
||||
extern signed char float_detect_tininess;
|
||||
enum {
|
||||
float_tininess_after_rounding = 0,
|
||||
float_tininess_before_rounding = 1
|
||||
};
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point rounding mode.
|
||||
*----------------------------------------------------------------------------*/
|
||||
extern signed char float_rounding_mode;
|
||||
enum {
|
||||
float_round_nearest_even = 0,
|
||||
float_round_down = 1,
|
||||
float_round_up = 2,
|
||||
float_round_to_zero = 3
|
||||
};
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point exception flags.
|
||||
*----------------------------------------------------------------------------*/
|
||||
extern signed char float_exception_flags;
|
||||
enum {
|
||||
float_flag_invalid = 1,
|
||||
float_flag_divbyzero = 4,
|
||||
float_flag_overflow = 8,
|
||||
float_flag_underflow = 16,
|
||||
float_flag_inexact = 32
|
||||
};
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Routine to raise any or all of the software IEC/IEEE floating-point
|
||||
| exception flags.
|
||||
*----------------------------------------------------------------------------*/
|
||||
void float_raise( signed char );
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE integer-to-floating-point conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float32 int32_to_float32( int );
|
||||
float64 int32_to_float64( int );
|
||||
#ifdef FLOATX80
|
||||
floatx80 int32_to_floatx80( int );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 int32_to_float128( int );
|
||||
#endif
|
||||
float32 int64_to_float32( long long );
|
||||
float64 int64_to_float64( long long );
|
||||
#ifdef FLOATX80
|
||||
floatx80 int64_to_floatx80( long long );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 int64_to_float128( long long );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE single-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int float32_to_int32( float32 );
|
||||
int float32_to_int32_round_to_zero( float32 );
|
||||
long long float32_to_int64( float32 );
|
||||
long long float32_to_int64_round_to_zero( float32 );
|
||||
float64 float32_to_float64( float32 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float32_to_floatx80( float32 );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 float32_to_float128( float32 );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE single-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float32 float32_round_to_int( float32 );
|
||||
float32 float32_add( float32, float32 );
|
||||
float32 float32_sub( float32, float32 );
|
||||
float32 float32_mul( float32, float32 );
|
||||
float32 float32_div( float32, float32 );
|
||||
float32 float32_rem( float32, float32 );
|
||||
float32 float32_sqrt( float32 );
|
||||
char float32_eq( float32, float32 );
|
||||
char float32_le( float32, float32 );
|
||||
char float32_lt( float32, float32 );
|
||||
char float32_eq_signaling( float32, float32 );
|
||||
char float32_le_quiet( float32, float32 );
|
||||
char float32_lt_quiet( float32, float32 );
|
||||
char float32_is_signaling_nan( float32 );
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE double-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int float64_to_int32( float64 );
|
||||
int float64_to_int32_round_to_zero( float64 );
|
||||
long long float64_to_int64( float64 );
|
||||
long long float64_to_int64_round_to_zero( float64 );
|
||||
float32 float64_to_float32( float64 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float64_to_floatx80( float64 );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 float64_to_float128( float64 );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE double-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float64 float64_round_to_int( float64 );
|
||||
float64 float64_add( float64, float64 );
|
||||
float64 float64_sub( float64, float64 );
|
||||
float64 float64_mul( float64, float64 );
|
||||
float64 float64_div( float64, float64 );
|
||||
float64 float64_rem( float64, float64 );
|
||||
float64 float64_sqrt( float64 );
|
||||
char float64_eq( float64, float64 );
|
||||
char float64_le( float64, float64 );
|
||||
char float64_lt( float64, float64 );
|
||||
char float64_eq_signaling( float64, float64 );
|
||||
char float64_le_quiet( float64, float64 );
|
||||
char float64_lt_quiet( float64, float64 );
|
||||
char float64_is_signaling_nan( float64 );
|
||||
|
||||
#ifdef FLOATX80
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int floatx80_to_int32( floatx80 );
|
||||
int floatx80_to_int32_round_to_zero( floatx80 );
|
||||
long long floatx80_to_int64( floatx80 );
|
||||
long long floatx80_to_int64_round_to_zero( floatx80 );
|
||||
float32 floatx80_to_float32( floatx80 );
|
||||
float64 floatx80_to_float64( floatx80 );
|
||||
#ifdef FLOAT128
|
||||
float128 floatx80_to_float128( floatx80 );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision rounding precision. Valid
|
||||
| values are 32, 64, and 80.
|
||||
*----------------------------------------------------------------------------*/
|
||||
extern signed char floatx80_rounding_precision;
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
floatx80 floatx80_round_to_int( floatx80 );
|
||||
floatx80 floatx80_add( floatx80, floatx80 );
|
||||
floatx80 floatx80_sub( floatx80, floatx80 );
|
||||
floatx80 floatx80_mul( floatx80, floatx80 );
|
||||
floatx80 floatx80_div( floatx80, floatx80 );
|
||||
floatx80 floatx80_rem( floatx80, floatx80 );
|
||||
floatx80 floatx80_sqrt( floatx80 );
|
||||
char floatx80_eq( floatx80, floatx80 );
|
||||
char floatx80_le( floatx80, floatx80 );
|
||||
char floatx80_lt( floatx80, floatx80 );
|
||||
char floatx80_eq_signaling( floatx80, floatx80 );
|
||||
char floatx80_le_quiet( floatx80, floatx80 );
|
||||
char floatx80_lt_quiet( floatx80, floatx80 );
|
||||
char floatx80_is_signaling_nan( floatx80 );
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef FLOAT128
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE quadruple-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int float128_to_int32( float128 );
|
||||
int float128_to_int32_round_to_zero( float128 );
|
||||
long long float128_to_int64( float128 );
|
||||
long long float128_to_int64_round_to_zero( float128 );
|
||||
float32 float128_to_float32( float128 );
|
||||
float64 float128_to_float64( float128 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float128_to_floatx80( float128 );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE quadruple-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float128 float128_round_to_int( float128 );
|
||||
float128 float128_add( float128, float128 );
|
||||
float128 float128_sub( float128, float128 );
|
||||
float128 float128_mul( float128, float128 );
|
||||
float128 float128_div( float128, float128 );
|
||||
float128 float128_rem( float128, float128 );
|
||||
float128 float128_sqrt( float128 );
|
||||
char float128_eq( float128, float128 );
|
||||
char float128_le( float128, float128 );
|
||||
char float128_lt( float128, float128 );
|
||||
char float128_eq_signaling( float128, float128 );
|
||||
char float128_le_quiet( float128, float128 );
|
||||
char float128_lt_quiet( float128, float128 );
|
||||
char float128_is_signaling_nan( float128 );
|
||||
|
||||
#endif
|
||||
|
72
softfloat/README.txt
Normal file
72
softfloat/README.txt
Normal file
|
@ -0,0 +1,72 @@
|
|||
|
||||
Package Overview for SoftFloat Release 2b
|
||||
|
||||
John R. Hauser
|
||||
2002 May 27
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Overview
|
||||
|
||||
SoftFloat is a software implementation of floating-point that conforms to
|
||||
the IEC/IEEE Standard for Binary Floating-Point Arithmetic. SoftFloat is
|
||||
distributed in the form of C source code. Compiling the SoftFloat sources
|
||||
generates two things:
|
||||
|
||||
-- A SoftFloat object file (typically `softfloat.o') containing the complete
|
||||
set of IEC/IEEE floating-point routines.
|
||||
|
||||
-- A `timesoftfloat' program for evaluating the speed of the SoftFloat
|
||||
routines. (The SoftFloat module is linked into this program.)
|
||||
|
||||
The SoftFloat package is documented in four text files:
|
||||
|
||||
SoftFloat.txt Documentation for using the SoftFloat functions.
|
||||
SoftFloat-source.txt Documentation for compiling SoftFloat.
|
||||
SoftFloat-history.txt History of major changes to SoftFloat.
|
||||
timesoftfloat.txt Documentation for using `timesoftfloat'.
|
||||
|
||||
Other files in the package comprise the source code for SoftFloat.
|
||||
|
||||
Please be aware that some work is involved in porting this software to other
|
||||
targets. It is not just a matter of getting `make' to complete without
|
||||
error messages. I would have written the code that way if I could, but
|
||||
there are fundamental differences between systems that can't be hidden.
|
||||
You should not attempt to compile SoftFloat without first reading both
|
||||
`SoftFloat.txt' and `SoftFloat-source.txt'.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Legal Notice
|
||||
|
||||
SoftFloat was written by me, John R. Hauser. This work was made possible in
|
||||
part by the International Computer Science Institute, located at Suite 600,
|
||||
1947 Center Street, Berkeley, California 94704. Funding was partially
|
||||
provided by the National Science Foundation under grant MIP-9311980. The
|
||||
original version of this code was written as part of a project to build
|
||||
a fixed-point vector processor in collaboration with the University of
|
||||
California at Berkeley, overseen by Profs. Nelson Morgan and John Wawrzynek.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL
|
||||
LOSSES, COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO
|
||||
FURTHERMORE EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER
|
||||
SCIENCE INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE
|
||||
SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, provided
|
||||
that the minimal documentation requirements stated in the source code are
|
||||
satisfied.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Contact Information
|
||||
|
||||
At the time of this writing, the most up-to-date information about
|
||||
SoftFloat and the latest release can be found at the Web page `http://
|
||||
www.cs.berkeley.edu/~jhauser/arithmetic/SoftFloat.html'.
|
||||
|
||||
|
68
softfloat/SPARC-GCC.h
Normal file
68
softfloat/SPARC-GCC.h
Normal file
|
@ -0,0 +1,68 @@
|
|||
|
||||
/*----------------------------------------------------------------------------
|
||||
| One of the macros `BIGENDIAN' or `LITTLEENDIAN' must be defined.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define BIGENDIAN
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The macro `BITS64' can be defined to indicate that 64-bit integer types are
|
||||
| supported by the compiler.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define BITS64
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Each of the following `typedef's defines the most convenient type that holds
|
||||
| integers of at least as many bits as specified. For example, `uint8' should
|
||||
| be the most convenient type that can hold unsigned integers of as many as
|
||||
| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
|
||||
| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
|
||||
| to the same as `int'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
typedef int flag;
|
||||
typedef int uint8;
|
||||
typedef int int8;
|
||||
typedef int uint16;
|
||||
typedef int int16;
|
||||
typedef unsigned int uint32;
|
||||
typedef signed int int32;
|
||||
#ifdef BITS64
|
||||
typedef unsigned long long int uint64;
|
||||
typedef signed long long int int64;
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Each of the following `typedef's defines a type that holds integers
|
||||
| of _exactly_ the number of bits specified. For instance, for most
|
||||
| implementation of C, `bits16' and `sbits16' should be `typedef'ed to
|
||||
| `unsigned short int' and `signed short int' (or `short int'), respectively.
|
||||
*----------------------------------------------------------------------------*/
|
||||
typedef unsigned char bits8;
|
||||
typedef signed char sbits8;
|
||||
typedef unsigned short int bits16;
|
||||
typedef signed short int sbits16;
|
||||
typedef unsigned int bits32;
|
||||
typedef signed int sbits32;
|
||||
#ifdef BITS64
|
||||
typedef unsigned long long int bits64;
|
||||
typedef signed long long int sbits64;
|
||||
#endif
|
||||
|
||||
#ifdef BITS64
|
||||
/*----------------------------------------------------------------------------
|
||||
| The `LIT64' macro takes as its argument a textual integer literal and
|
||||
| if necessary ``marks'' the literal as having a 64-bit integer type.
|
||||
| For example, the GNU C Compiler (`gcc') requires that 64-bit literals be
|
||||
| appended with the letters `LL' standing for `long long', which is `gcc's
|
||||
| name for the 64-bit integer type. Some compilers may allow `LIT64' to be
|
||||
| defined as the identity macro: `#define LIT64( a ) a'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define LIT64( a ) a##LL
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The macro `INLINE' can be used before functions that should be inlined. If
|
||||
| a compiler does not support explicit inlining, this macro should be defined
|
||||
| to be `static'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define INLINE extern inline
|
||||
|
24
softfloat/SPARC-Solaris-GCC/Makefile
Normal file
24
softfloat/SPARC-Solaris-GCC/Makefile
Normal file
|
@ -0,0 +1,24 @@
|
|||
|
||||
PROCESSOR_H = ../../../processors/SPARC-GCC.h
|
||||
SOFTFLOAT_MACROS = ../softfloat-macros
|
||||
|
||||
OBJ = .o
|
||||
EXE =
|
||||
INCLUDES = -I. -I..
|
||||
COMPILE_C = gcc -c -o $@ $(INCLUDES) -I- -O2
|
||||
LINK = gcc -o $@
|
||||
|
||||
ALL: softfloat$(OBJ) timesoftfloat$(EXE)
|
||||
|
||||
milieu.h: $(PROCESSOR_H)
|
||||
touch milieu.h
|
||||
|
||||
softfloat$(OBJ): milieu.h softfloat.h softfloat-specialize $(SOFTFLOAT_MACROS) ../softfloat.c
|
||||
$(COMPILE_C) ../softfloat.c
|
||||
|
||||
timesoftfloat$(OBJ): milieu.h softfloat.h ../timesoftfloat.c
|
||||
$(COMPILE_C) ../timesoftfloat.c
|
||||
|
||||
timesoftfloat$(EXE): softfloat$(OBJ) timesoftfloat$(OBJ)
|
||||
$(LINK) softfloat$(OBJ) timesoftfloat$(OBJ)
|
||||
|
45
softfloat/SPARC-Solaris-GCC/milieu.h
Normal file
45
softfloat/SPARC-Solaris-GCC/milieu.h
Normal file
|
@ -0,0 +1,45 @@
|
|||
|
||||
/*============================================================================
|
||||
|
||||
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
|
||||
Package, Release 2b.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
||||
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
||||
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
||||
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
||||
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
||||
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
||||
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) the source code for the derivative work includes prominent notice that
|
||||
the work is derivative, and (2) the source code includes prominent notice with
|
||||
these four paragraphs for those parts of this code that are retained.
|
||||
|
||||
=============================================================================*/
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Include common integer types and flags.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#include "../../../processors/SPARC-GCC.h"
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Symbolic Boolean literals.
|
||||
*----------------------------------------------------------------------------*/
|
||||
enum {
|
||||
FALSE = 0,
|
||||
TRUE = 1
|
||||
};
|
||||
|
412
softfloat/SPARC-Solaris-GCC/softfloat-specialize
Normal file
412
softfloat/SPARC-Solaris-GCC/softfloat-specialize
Normal file
|
@ -0,0 +1,412 @@
|
|||
|
||||
/*============================================================================
|
||||
|
||||
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2b.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
||||
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
||||
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
||||
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
||||
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
||||
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
||||
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) the source code for the derivative work includes prominent notice that
|
||||
the work is derivative, and (2) the source code includes prominent notice with
|
||||
these four paragraphs for those parts of this code that are retained.
|
||||
|
||||
=============================================================================*/
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Underflow tininess-detection mode, statically initialized to default value.
|
||||
| (The declaration in `softfloat.h' must match the `int8' type here.)
|
||||
*----------------------------------------------------------------------------*/
|
||||
int8 float_detect_tininess = float_tininess_before_rounding;
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Raises the exceptions specified by `flags'. Floating-point traps can be
|
||||
| defined here if desired. It is currently not possible for such a trap
|
||||
| to substitute a result value. If traps are not implemented, this routine
|
||||
| should be simply `float_exception_flags |= flags;'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
void float_raise( int8 flags )
|
||||
{
|
||||
|
||||
float_exception_flags |= flags;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Internal canonical NaN format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
typedef struct {
|
||||
flag sign;
|
||||
bits64 high, low;
|
||||
} commonNaNT;
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated single-precision NaN.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define float32_default_nan 0x7FFFFFFF
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the single-precision floating-point value `a' is a NaN;
|
||||
| otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float32_is_nan( float32 a )
|
||||
{
|
||||
|
||||
return ( 0xFF000000 < (bits32) ( a<<1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the single-precision floating-point value `a' is a signaling
|
||||
| NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float32_is_signaling_nan( float32 a )
|
||||
{
|
||||
|
||||
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the single-precision floating-point NaN
|
||||
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
| exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static commonNaNT float32ToCommonNaN( float32 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a>>31;
|
||||
z.low = 0;
|
||||
z.high = ( (bits64) a )<<41;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the canonical NaN `a' to the single-
|
||||
| precision floating-point format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float32 commonNaNToFloat32( commonNaNT a )
|
||||
{
|
||||
|
||||
return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes two single-precision floating-point values `a' and `b', one of which
|
||||
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
||||
| signaling NaN, the invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float32 propagateFloat32NaN( float32 a, float32 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float32_is_nan( a );
|
||||
aIsSignalingNaN = float32_is_signaling_nan( a );
|
||||
bIsNaN = float32_is_nan( b );
|
||||
bIsSignalingNaN = float32_is_signaling_nan( b );
|
||||
a |= 0x00400000;
|
||||
b |= 0x00400000;
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated double-precision NaN.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define float64_default_nan LIT64( 0x7FFFFFFFFFFFFFFF )
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the double-precision floating-point value `a' is a NaN;
|
||||
| otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float64_is_nan( float64 a )
|
||||
{
|
||||
|
||||
return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the double-precision floating-point value `a' is a signaling
|
||||
| NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float64_is_signaling_nan( float64 a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
|
||||
&& ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the double-precision floating-point NaN
|
||||
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
| exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static commonNaNT float64ToCommonNaN( float64 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a>>63;
|
||||
z.low = 0;
|
||||
z.high = a<<12;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the canonical NaN `a' to the double-
|
||||
| precision floating-point format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float64 commonNaNToFloat64( commonNaNT a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( (bits64) a.sign )<<63 )
|
||||
| LIT64( 0x7FF8000000000000 )
|
||||
| ( a.high>>12 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes two double-precision floating-point values `a' and `b', one of which
|
||||
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
||||
| signaling NaN, the invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float64 propagateFloat64NaN( float64 a, float64 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float64_is_nan( a );
|
||||
aIsSignalingNaN = float64_is_signaling_nan( a );
|
||||
bIsNaN = float64_is_nan( b );
|
||||
bIsSignalingNaN = float64_is_signaling_nan( b );
|
||||
a |= LIT64( 0x0008000000000000 );
|
||||
b |= LIT64( 0x0008000000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a;
|
||||
|
||||
}
|
||||
|
||||
#ifdef FLOATX80
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated extended double-precision NaN. The
|
||||
| `high' and `low' values hold the most- and least-significant bits,
|
||||
| respectively.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define floatx80_default_nan_high 0x7FFF
|
||||
#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the extended double-precision floating-point value `a' is a
|
||||
| NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag floatx80_is_nan( floatx80 a )
|
||||
{
|
||||
|
||||
return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the extended double-precision floating-point value `a' is a
|
||||
| signaling NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag floatx80_is_signaling_nan( floatx80 a )
|
||||
{
|
||||
bits64 aLow;
|
||||
|
||||
aLow = a.low & ~ LIT64( 0x4000000000000000 );
|
||||
return
|
||||
( ( a.high & 0x7FFF ) == 0x7FFF )
|
||||
&& (bits64) ( aLow<<1 )
|
||||
&& ( a.low == aLow );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the extended double-precision floating-
|
||||
| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
|
||||
| invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static commonNaNT floatx80ToCommonNaN( floatx80 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a.high>>15;
|
||||
z.low = 0;
|
||||
z.high = a.low<<1;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the canonical NaN `a' to the extended
|
||||
| double-precision floating-point format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static floatx80 commonNaNToFloatx80( commonNaNT a )
|
||||
{
|
||||
floatx80 z;
|
||||
|
||||
z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
|
||||
z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes two extended double-precision floating-point values `a' and `b', one
|
||||
| of which is a NaN, and returns the appropriate NaN result. If either `a' or
|
||||
| `b' is a signaling NaN, the invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = floatx80_is_nan( a );
|
||||
aIsSignalingNaN = floatx80_is_signaling_nan( a );
|
||||
bIsNaN = floatx80_is_nan( b );
|
||||
bIsSignalingNaN = floatx80_is_signaling_nan( b );
|
||||
a.low |= LIT64( 0xC000000000000000 );
|
||||
b.low |= LIT64( 0xC000000000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a;
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef FLOAT128
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated quadruple-precision NaN. The `high' and
|
||||
| `low' values hold the most- and least-significant bits, respectively.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define float128_default_nan_high LIT64( 0x7FFFFFFFFFFFFFFF )
|
||||
#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
|
||||
| otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float128_is_nan( float128 a )
|
||||
{
|
||||
|
||||
return
|
||||
( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
|
||||
&& ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the quadruple-precision floating-point value `a' is a
|
||||
| signaling NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float128_is_signaling_nan( float128 a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
|
||||
&& ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the quadruple-precision floating-point NaN
|
||||
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
| exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static commonNaNT float128ToCommonNaN( float128 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a.high>>63;
|
||||
shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the canonical NaN `a' to the quadruple-
|
||||
| precision floating-point format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float128 commonNaNToFloat128( commonNaNT a )
|
||||
{
|
||||
float128 z;
|
||||
|
||||
shift128Right( a.high, a.low, 16, &z.high, &z.low );
|
||||
z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes two quadruple-precision floating-point values `a' and `b', one of
|
||||
| which is a NaN, and returns the appropriate NaN result. If either `a' or
|
||||
| `b' is a signaling NaN, the invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float128 propagateFloat128NaN( float128 a, float128 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float128_is_nan( a );
|
||||
aIsSignalingNaN = float128_is_signaling_nan( a );
|
||||
bIsNaN = float128_is_nan( b );
|
||||
bIsSignalingNaN = float128_is_signaling_nan( b );
|
||||
a.high |= LIT64( 0x0000800000000000 );
|
||||
b.high |= LIT64( 0x0000800000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a;
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
259
softfloat/SPARC-Solaris-GCC/softfloat.h
Normal file
259
softfloat/SPARC-Solaris-GCC/softfloat.h
Normal file
|
@ -0,0 +1,259 @@
|
|||
|
||||
/*============================================================================
|
||||
|
||||
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
|
||||
Package, Release 2b.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
||||
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
||||
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
||||
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
||||
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
||||
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
||||
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) the source code for the derivative work includes prominent notice that
|
||||
the work is derivative, and (2) the source code includes prominent notice with
|
||||
these four paragraphs for those parts of this code that are retained.
|
||||
|
||||
=============================================================================*/
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The macro `FLOATX80' must be defined to enable the extended double-precision
|
||||
| floating-point format `floatx80'. If this macro is not defined, the
|
||||
| `floatx80' type will not be defined, and none of the functions that either
|
||||
| input or output the `floatx80' type will be defined. The same applies to
|
||||
| the `FLOAT128' macro and the quadruple-precision format `float128'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define FLOATX80
|
||||
#define FLOAT128
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point types.
|
||||
*----------------------------------------------------------------------------*/
|
||||
typedef unsigned int float32;
|
||||
typedef unsigned long long float64;
|
||||
#ifdef FLOATX80
|
||||
typedef struct {
|
||||
unsigned short high;
|
||||
unsigned long long low;
|
||||
} floatx80;
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
typedef struct {
|
||||
unsigned long long high, low;
|
||||
} float128;
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point underflow tininess-detection mode.
|
||||
*----------------------------------------------------------------------------*/
|
||||
extern int float_detect_tininess;
|
||||
enum {
|
||||
float_tininess_after_rounding = 0,
|
||||
float_tininess_before_rounding = 1
|
||||
};
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point rounding mode.
|
||||
*----------------------------------------------------------------------------*/
|
||||
extern int float_rounding_mode;
|
||||
enum {
|
||||
float_round_nearest_even = 0,
|
||||
float_round_to_zero = 1,
|
||||
float_round_up = 2,
|
||||
float_round_down = 3
|
||||
};
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point exception flags.
|
||||
*----------------------------------------------------------------------------*/
|
||||
extern int float_exception_flags;
|
||||
enum {
|
||||
float_flag_inexact = 1,
|
||||
float_flag_divbyzero = 2,
|
||||
float_flag_underflow = 4,
|
||||
float_flag_overflow = 8,
|
||||
float_flag_invalid = 16
|
||||
};
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Routine to raise any or all of the software IEC/IEEE floating-point
|
||||
| exception flags.
|
||||
*----------------------------------------------------------------------------*/
|
||||
void float_raise( int );
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE integer-to-floating-point conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float32 int32_to_float32( int );
|
||||
float64 int32_to_float64( int );
|
||||
#ifdef FLOATX80
|
||||
floatx80 int32_to_floatx80( int );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 int32_to_float128( int );
|
||||
#endif
|
||||
float32 int64_to_float32( long long );
|
||||
float64 int64_to_float64( long long );
|
||||
#ifdef FLOATX80
|
||||
floatx80 int64_to_floatx80( long long );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 int64_to_float128( long long );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE single-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int float32_to_int32( float32 );
|
||||
int float32_to_int32_round_to_zero( float32 );
|
||||
long long float32_to_int64( float32 );
|
||||
long long float32_to_int64_round_to_zero( float32 );
|
||||
float64 float32_to_float64( float32 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float32_to_floatx80( float32 );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 float32_to_float128( float32 );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE single-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float32 float32_round_to_int( float32 );
|
||||
float32 float32_add( float32, float32 );
|
||||
float32 float32_sub( float32, float32 );
|
||||
float32 float32_mul( float32, float32 );
|
||||
float32 float32_div( float32, float32 );
|
||||
float32 float32_rem( float32, float32 );
|
||||
float32 float32_sqrt( float32 );
|
||||
int float32_eq( float32, float32 );
|
||||
int float32_le( float32, float32 );
|
||||
int float32_lt( float32, float32 );
|
||||
int float32_eq_signaling( float32, float32 );
|
||||
int float32_le_quiet( float32, float32 );
|
||||
int float32_lt_quiet( float32, float32 );
|
||||
int float32_is_signaling_nan( float32 );
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE double-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int float64_to_int32( float64 );
|
||||
int float64_to_int32_round_to_zero( float64 );
|
||||
long long float64_to_int64( float64 );
|
||||
long long float64_to_int64_round_to_zero( float64 );
|
||||
float32 float64_to_float32( float64 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float64_to_floatx80( float64 );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 float64_to_float128( float64 );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE double-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float64 float64_round_to_int( float64 );
|
||||
float64 float64_add( float64, float64 );
|
||||
float64 float64_sub( float64, float64 );
|
||||
float64 float64_mul( float64, float64 );
|
||||
float64 float64_div( float64, float64 );
|
||||
float64 float64_rem( float64, float64 );
|
||||
float64 float64_sqrt( float64 );
|
||||
int float64_eq( float64, float64 );
|
||||
int float64_le( float64, float64 );
|
||||
int float64_lt( float64, float64 );
|
||||
int float64_eq_signaling( float64, float64 );
|
||||
int float64_le_quiet( float64, float64 );
|
||||
int float64_lt_quiet( float64, float64 );
|
||||
int float64_is_signaling_nan( float64 );
|
||||
|
||||
#ifdef FLOATX80
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int floatx80_to_int32( floatx80 );
|
||||
int floatx80_to_int32_round_to_zero( floatx80 );
|
||||
long long floatx80_to_int64( floatx80 );
|
||||
long long floatx80_to_int64_round_to_zero( floatx80 );
|
||||
float32 floatx80_to_float32( floatx80 );
|
||||
float64 floatx80_to_float64( floatx80 );
|
||||
#ifdef FLOAT128
|
||||
float128 floatx80_to_float128( floatx80 );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision rounding precision. Valid
|
||||
| values are 32, 64, and 80.
|
||||
*----------------------------------------------------------------------------*/
|
||||
extern int floatx80_rounding_precision;
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
floatx80 floatx80_round_to_int( floatx80 );
|
||||
floatx80 floatx80_add( floatx80, floatx80 );
|
||||
floatx80 floatx80_sub( floatx80, floatx80 );
|
||||
floatx80 floatx80_mul( floatx80, floatx80 );
|
||||
floatx80 floatx80_div( floatx80, floatx80 );
|
||||
floatx80 floatx80_rem( floatx80, floatx80 );
|
||||
floatx80 floatx80_sqrt( floatx80 );
|
||||
int floatx80_eq( floatx80, floatx80 );
|
||||
int floatx80_le( floatx80, floatx80 );
|
||||
int floatx80_lt( floatx80, floatx80 );
|
||||
int floatx80_eq_signaling( floatx80, floatx80 );
|
||||
int floatx80_le_quiet( floatx80, floatx80 );
|
||||
int floatx80_lt_quiet( floatx80, floatx80 );
|
||||
int floatx80_is_signaling_nan( floatx80 );
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef FLOAT128
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE quadruple-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int float128_to_int32( float128 );
|
||||
int float128_to_int32_round_to_zero( float128 );
|
||||
long long float128_to_int64( float128 );
|
||||
long long float128_to_int64_round_to_zero( float128 );
|
||||
float32 float128_to_float32( float128 );
|
||||
float64 float128_to_float64( float128 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float128_to_floatx80( float128 );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE quadruple-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float128 float128_round_to_int( float128 );
|
||||
float128 float128_add( float128, float128 );
|
||||
float128 float128_sub( float128, float128 );
|
||||
float128 float128_mul( float128, float128 );
|
||||
float128 float128_div( float128, float128 );
|
||||
float128 float128_rem( float128, float128 );
|
||||
float128 float128_sqrt( float128 );
|
||||
int float128_eq( float128, float128 );
|
||||
int float128_le( float128, float128 );
|
||||
int float128_lt( float128, float128 );
|
||||
int float128_eq_signaling( float128, float128 );
|
||||
int float128_le_quiet( float128, float128 );
|
||||
int float128_lt_quiet( float128, float128 );
|
||||
int float128_is_signaling_nan( float128 );
|
||||
|
||||
#endif
|
||||
|
57
softfloat/SoftFloat-history.txt
Normal file
57
softfloat/SoftFloat-history.txt
Normal file
|
@ -0,0 +1,57 @@
|
|||
|
||||
History of Major Changes to SoftFloat, up to Release 2b
|
||||
|
||||
John R. Hauser
|
||||
2002 May 27
|
||||
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Release 2b (2002 May)
|
||||
|
||||
-- Made minor updates to the documentation, including improved wording of
|
||||
the legal restrictions on using SoftFloat.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Release 2a (1998 December)
|
||||
|
||||
-- Added functions to convert between 64-bit integers (int64) and all
|
||||
supported floating-point formats.
|
||||
|
||||
-- Fixed a bug in all 64-bit-version square root functions except
|
||||
`float32_sqrt' that caused the result sometimes to be off by 1 unit in
|
||||
the last place (1 ulp) from what it should be. (Bug discovered by Paul
|
||||
Donahue.)
|
||||
|
||||
-- Improved the makefiles.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Release 2 (1997 June)
|
||||
|
||||
-- Created the 64-bit (bits64) version, adding the floatx80 and float128
|
||||
formats.
|
||||
|
||||
-- Changed the source directory structure, splitting the sources into a
|
||||
`bits32' and a `bits64' version. Renamed `environment.h' to `milieu.h'
|
||||
to avoid confusion with environment variables.
|
||||
|
||||
-- Fixed a small error that caused `float64_round_to_int' often to round the
|
||||
wrong way in nearest/even mode when the operand was between 2^20 and 2^21
|
||||
and halfway between two integers.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Release 1a (1996 July)
|
||||
|
||||
-- Corrected a mistake that caused borderline underflow cases not to raise
|
||||
the underflow flag when they should have. (Problem reported by Doug
|
||||
Priest.)
|
||||
|
||||
-- Added the `float_detect_tininess' variable to control whether tininess is
|
||||
detected before or after rounding.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Release 1 (1996 July)
|
||||
|
||||
-- Original release.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
|
390
softfloat/SoftFloat-source.txt
Normal file
390
softfloat/SoftFloat-source.txt
Normal file
|
@ -0,0 +1,390 @@
|
|||
|
||||
SoftFloat Release 2b Source Documentation
|
||||
|
||||
John R. Hauser
|
||||
2002 May 27
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Introduction
|
||||
|
||||
SoftFloat is a software implementation of floating-point that conforms to
|
||||
the IEC/IEEE Standard for Binary Floating-Point Arithmetic. SoftFloat can
|
||||
support four floating-point formats: single precision, double precision,
|
||||
extended double precision, and quadruple precision. All operations required
|
||||
by the IEEE Standard are implemented, except for conversions to and from
|
||||
decimal. SoftFloat is distributed in the form of C source code, so a
|
||||
C compiler is needed to compile the code. Support for the extended double-
|
||||
precision and quadruple-precision formats is dependent on the C compiler
|
||||
implementing a 64-bit integer type.
|
||||
|
||||
This document gives information needed for compiling and/or porting
|
||||
SoftFloat.
|
||||
|
||||
The source code for SoftFloat is intended to be relatively machine-
|
||||
independent and should be compilable using most any ISO/ANSI C compiler. At
|
||||
the time of this writing, SoftFloat has been successfully compiled with the
|
||||
GNU C Compiler (`gcc') for several platforms.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Limitations
|
||||
|
||||
As supplied, SoftFloat requires an ISO/ANSI-style C compiler. No attempt
|
||||
has been made to accomodate compilers that are not ISO-conformant. Older
|
||||
``K&R-style'' compilers are not adequate for compiling SoftFloat. All
|
||||
testing I have done so far has been with the GNU C Compiler. Compilation
|
||||
with other compilers should be possible but has not been tested by me.
|
||||
|
||||
The SoftFloat sources assume that source code file names can be longer than
|
||||
8 characters. In order to compile under an MS-DOS-type system, many of the
|
||||
source files will need to be renamed, and the source and makefiles edited
|
||||
appropriately. Once compiled, the SoftFloat binary does not depend on the
|
||||
existence of long file names.
|
||||
|
||||
The underlying machine is assumed to be binary with a word size that is a
|
||||
power of 2. Bytes are 8 bits. Arithmetic on signed integers must modularly
|
||||
wrap around on overflows (as is already required for unsigned integers
|
||||
in C).
|
||||
|
||||
Support for the extended double-precision and quadruple-precision formats
|
||||
depends on the C compiler implementing a 64-bit integer type. If the
|
||||
largest integer type supported by the C compiler is 32 bits, SoftFloat is
|
||||
limited to the single- and double-precision formats.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Contents
|
||||
|
||||
Introduction
|
||||
Limitations
|
||||
Contents
|
||||
Legal Notice
|
||||
SoftFloat Source Directory Structure
|
||||
SoftFloat Source Files
|
||||
processors/*.h
|
||||
softfloat/bits*/*/softfloat.h
|
||||
softfloat/bits*/*/milieu.h
|
||||
softfloat/bits*/*/softfloat-specialize
|
||||
softfloat/bits*/softfloat-macros
|
||||
softfloat/bits*/softfloat.c
|
||||
Steps to Creating a `softfloat.o'
|
||||
Making `softfloat.o' a Library
|
||||
Testing SoftFloat
|
||||
Timing SoftFloat
|
||||
Compiler Options and Efficiency
|
||||
Processor-Specific Optimization of `softfloat.c' Using `softfloat-macros'
|
||||
Contact Information
|
||||
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Legal Notice
|
||||
|
||||
SoftFloat was written by John R. Hauser. This work was made possible in
|
||||
part by the International Computer Science Institute, located at Suite 600,
|
||||
1947 Center Street, Berkeley, California 94704. Funding was partially
|
||||
provided by the National Science Foundation under grant MIP-9311980. The
|
||||
original version of this code was written as part of a project to build
|
||||
a fixed-point vector processor in collaboration with the University of
|
||||
California at Berkeley, overseen by Profs. Nelson Morgan and John Wawrzynek.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL
|
||||
LOSSES, COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO
|
||||
FURTHERMORE EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER
|
||||
SCIENCE INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE
|
||||
SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, provided
|
||||
that the minimal documentation requirements stated in the source code are
|
||||
satisfied.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
SoftFloat Source Directory Structure
|
||||
|
||||
Because SoftFloat is targeted to multiple platforms, its source code
|
||||
is slightly scattered between target-specific and target-independent
|
||||
directories and files. The directory structure is as follows:
|
||||
|
||||
processors
|
||||
softfloat
|
||||
bits64
|
||||
templates
|
||||
386-Win32-GCC
|
||||
SPARC-Solaris-GCC
|
||||
bits32
|
||||
templates
|
||||
386-Win32-GCC
|
||||
SPARC-Solaris-GCC
|
||||
|
||||
The two topmost directories and their contents are:
|
||||
|
||||
softfloat - Most of the source code needed for SoftFloat.
|
||||
processors - Target-specific header files that are not specific to
|
||||
SoftFloat.
|
||||
|
||||
The `softfloat' directory is further split into two parts:
|
||||
|
||||
bits64 - SoftFloat implementation using 64-bit integers.
|
||||
bits32 - SoftFloat implementation using only 32-bit integers.
|
||||
|
||||
Within these directories are subdirectories for each of the targeted
|
||||
platforms. The SoftFloat source code is distributed with targets
|
||||
`386-Win32-GCC' and `SPARC-Solaris-GCC' (and perhaps others) already
|
||||
prepared for both the 32-bit and 64-bit implementations. Source files that
|
||||
are not within these target-specific subdirectories are intended to be
|
||||
target-independent.
|
||||
|
||||
The naming convention used for the target-specific directories is
|
||||
`<processor>-<executable-type>-<compiler>'. The names of the supplied
|
||||
target directories should be interpreted as follows:
|
||||
|
||||
<processor>:
|
||||
386 - Intel 386-compatible processor.
|
||||
SPARC - SPARC processor (as used by Sun computers).
|
||||
<executable-type>:
|
||||
Win32 - Microsoft Win32 executable.
|
||||
Solaris - Sun Solaris executable.
|
||||
<compiler>:
|
||||
GCC - GNU C Compiler.
|
||||
|
||||
You do not need to maintain this convention if you do not want to.
|
||||
|
||||
Alongside the supplied target-specific directories is a `templates'
|
||||
directory containing a set of ``generic'' target-specific source files. A
|
||||
new target directory can be created by copying the `templates' directory and
|
||||
editing the files inside. (Complete instructions for porting SoftFloat to a
|
||||
new target are in the section _Steps to Creating a `softfloat.o'_.) Note
|
||||
that the `templates' directory will not work as a target directory without
|
||||
some editing. To avoid confusion, it would be wise to refrain from editing
|
||||
the files inside `templates' directly.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
SoftFloat Source Files
|
||||
|
||||
The purpose of each source file is described below. In the following,
|
||||
the `*' symbol is used in place of the name of a specific target, such as
|
||||
`386-Win32-GCC' or `SPARC-Solaris-GCC', or in place of some other text, as
|
||||
in `bits*' for either `bits32' or `bits64'.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
processors/*.h
|
||||
|
||||
The target-specific `processors' header file defines integer types
|
||||
of various sizes, and also defines certain C preprocessor macros that
|
||||
characterize the target. The two examples supplied are `386-GCC.h' and
|
||||
`SPARC-GCC.h'. The naming convention used for processor header files is
|
||||
`<processor>-<compiler>.h'.
|
||||
|
||||
If 64-bit integers are supported by the compiler, the macro name `BITS64'
|
||||
should be defined here along with the corresponding 64-bit integer
|
||||
types. In addition, the function-like macro `LIT64' must be defined for
|
||||
constructing 64-bit integer literals (constants). The `LIT64' macro is used
|
||||
consistently in the SoftFloat code to annotate 64-bit literals.
|
||||
|
||||
If `BITS64' is not defined, only the 32-bit version of SoftFloat can be
|
||||
compiled. If `BITS64' _is_ defined, either can be compiled.
|
||||
|
||||
If an inlining attribute (such as an `inline' keyword) is provided by the
|
||||
compiler, the macro `INLINE' should be defined to the appropriate keyword.
|
||||
If not, `INLINE' can be set to the keyword `static'. The `INLINE' macro
|
||||
appears in the SoftFloat source code before every function that should
|
||||
be inlined by the compiler. SoftFloat depends on inlining to obtain
|
||||
good speed. Even if inlining cannot be forced with a language keyword,
|
||||
the compiler may still be able to perform inlining on its own as an
|
||||
optimization. If a command-line option is needed to convince the compiler
|
||||
to perform this optimization, this should be assured in the makefile. (See
|
||||
the section _Compiler Options and Efficiency_ below.)
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
softfloat/bits*/*/softfloat.h
|
||||
|
||||
The target-specific `softfloat.h' header file defines the SoftFloat
|
||||
interface as seen by clients.
|
||||
|
||||
Unlike the actual function definitions in `softfloat.c', the declarations
|
||||
in `softfloat.h' do not use any of the types defined by the `processors'
|
||||
header file. This is done so that clients will not have to include the
|
||||
`processors' header file in order to use SoftFloat. Nevertheless, the
|
||||
target-specific declarations in `softfloat.h' must match what `softfloat.c'
|
||||
expects. For example, if `int32' is defined as `int' in the `processors'
|
||||
header file, then in `softfloat.h' the output of `float32_to_int32' should
|
||||
be stated as `int', although in `softfloat.c' it is given in target-
|
||||
independent form as `int32'.
|
||||
|
||||
For the `bits64' implementation of SoftFloat, the macro names `FLOATX80' and
|
||||
`FLOAT128' must be defined in order for the extended double-precision and
|
||||
quadruple-precision formats to be enabled in the code. Conversely, either
|
||||
or both of the extended formats can be disabled by simply removing the
|
||||
`#define' of the respective macro. When an extended format is not enabled,
|
||||
none of the functions that either input or output the format are defined,
|
||||
and no space is taken up in `softfloat.o' by such functions. There is no
|
||||
provision for disabling the usual single- and double-precision formats.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
softfloat/bits*/*/milieu.h
|
||||
|
||||
The target-specific `milieu.h' header file provides declarations that are
|
||||
needed to compile SoftFloat. In addition, deviations from ISO/ANSI C by
|
||||
the compiler (such as names not properly declared in system header files)
|
||||
are corrected in this header if possible.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
softfloat/bits*/*/softfloat-specialize
|
||||
|
||||
This target-specific C source fragment defines:
|
||||
|
||||
-- whether tininess for underflow is detected before or after rounding by
|
||||
default;
|
||||
-- what (if anything) special happens when exceptions are raised;
|
||||
-- how signaling NaNs are distinguished from quiet NaNs;
|
||||
-- the default generated quiet NaNs; and
|
||||
-- how NaNs are propagated from function inputs to output.
|
||||
|
||||
These details are not decided by the IEC/IEEE Standard. This fragment is
|
||||
included verbatim within `softfloat.c' when SoftFloat is compiled.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
softfloat/bits*/softfloat-macros
|
||||
|
||||
This target-independent C source fragment defines a number of arithmetic
|
||||
functions used as primitives within the `softfloat.c' source. Most of
|
||||
the functions defined here are intended to be inlined for efficiency.
|
||||
This fragment is included verbatim within `softfloat.c' when SoftFloat is
|
||||
compiled.
|
||||
|
||||
Target-specific variations on this file are possible. See the section
|
||||
_Processor-Specific Optimization of `softfloat.c' Using `softfloat-macros'_
|
||||
below.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
softfloat/bits*/softfloat.c
|
||||
|
||||
The target-independent `softfloat.c' source file contains the body of the
|
||||
SoftFloat implementation.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
|
||||
The inclusion of the files above within each other (using `#include') can be
|
||||
shown graphically as follows:
|
||||
|
||||
softfloat/bits*/softfloat.c
|
||||
softfloat/bits*/*/milieu.h
|
||||
processors/*.h
|
||||
softfloat/bits*/*/softfloat.h
|
||||
softfloat/bits*/*/softfloat-specialize
|
||||
softfloat/bits*/softfloat-macros
|
||||
|
||||
Note in particular that `softfloat.c' does not include the `processors'
|
||||
header file directly. Rather, `softfloat.c' includes the target-specific
|
||||
`milieu.h' header file, which in turn includes the appropriate processor
|
||||
header file.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Steps to Creating a `softfloat.o'
|
||||
|
||||
Porting and/or compiling SoftFloat involves the following steps:
|
||||
|
||||
1. If one does not already exist, create an appropriate `.h' file in the
|
||||
`processors' directory.
|
||||
|
||||
2. If `BITS64' is defined in the `processors' header file, choose whether
|
||||
to compile the 32-bit or 64-bit implementation of SoftFloat. If
|
||||
`BITS64' is not defined, your only choice is the 32-bit implementation.
|
||||
The remaining steps occur within either the `bits32' or `bits64'
|
||||
subdirectories.
|
||||
|
||||
3. If one does not already exist, create an appropriate target-specific
|
||||
subdirectory by copying the given `templates' directory.
|
||||
|
||||
4. In the target-specific subdirectory, edit the files `softfloat-specialize'
|
||||
and `softfloat.h' to define the desired exception handling functions
|
||||
and mode control values. In the `softfloat.h' header file, ensure also
|
||||
that all declarations give the proper target-specific type (such as
|
||||
`int' or `long') corresponding to the target-independent type used in
|
||||
`softfloat.c' (such as `int32'). None of the type names declared in the
|
||||
`processors' header file should appear in `softfloat.h'.
|
||||
|
||||
5. In the target-specific subdirectory, edit the files `milieu.h' and
|
||||
`Makefile' to reflect the current environment.
|
||||
|
||||
6. In the target-specific subdirectory, execute `make'.
|
||||
|
||||
For the targets that are supplied, if the expected compiler is available
|
||||
(usually `gcc'), it should only be necessary to execute `make' in the
|
||||
target-specific subdirectory.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Making `softfloat.o' a Library
|
||||
|
||||
SoftFloat is not made into a software library by the supplied makefile.
|
||||
If desired, `softfloat.o' can easily be put into its own library (in Unix,
|
||||
`softfloat.a') using the usual system tool (in Unix, `ar').
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Testing SoftFloat
|
||||
|
||||
SoftFloat can be tested using the `testsoftfloat' program by the same
|
||||
author. The `testsoftfloat' program is part of the TestFloat package
|
||||
available at the Web page `http://www.cs.berkeley.edu/~jhauser/arithmetic/
|
||||
TestFloat.html'.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Timing SoftFloat
|
||||
|
||||
A program called `timesoftfloat' for timing the SoftFloat functions is
|
||||
included with the SoftFloat source code. Compiling `timesoftfloat' should
|
||||
pose no difficulties once `softfloat.o' exists. The supplied makefile
|
||||
will create a `timesoftfloat' executable by default after generating
|
||||
`softfloat.o'. See `timesoftfloat.txt' for documentation about using
|
||||
`timesoftfloat'.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Compiler Options and Efficiency
|
||||
|
||||
In order to get good speed with SoftFloat, it is important that the compiler
|
||||
inline the routines that have been marked `INLINE' in the code. Even if
|
||||
inlining cannot be forced by an appropriate definition of the `INLINE'
|
||||
macro, the compiler may still be able to perform inlining on its own as
|
||||
an optimization. In that case, the makefile should be edited to give the
|
||||
compiler whatever option is required to cause it to inline small functions.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Processor-Specific Optimization of `softfloat.c' Using `softfloat-macros'
|
||||
|
||||
The `softfloat-macros' source fragment defines arithmetic functions used
|
||||
as primitives by `softfloat.c'. This file has been written in a target-
|
||||
independent form. For a given target, it may be possible to improve on
|
||||
these functions using target-specific and/or non-ISO-C features (such
|
||||
as `asm' statements). For example, one of the ``macro'' functions takes
|
||||
two word-size integers and returns their full product in two words.
|
||||
This operation can be done directly in hardware on many processors; but
|
||||
because it is not available through standard C, the function defined in
|
||||
`softfloat-macros' uses four multiplications to achieve the same result.
|
||||
|
||||
To address these shortcomings, a customized version of `softfloat-macros'
|
||||
can be created in any of the target-specific subdirectories. A simple
|
||||
modification to the target's makefile should be sufficient to ensure that
|
||||
the custom version is used instead of the generic one.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Contact Information
|
||||
|
||||
At the time of this writing, the most up-to-date information about
|
||||
SoftFloat and the latest release can be found at the Web page `http://
|
||||
www.cs.berkeley.edu/~jhauser/arithmetic/SoftFloat.html'.
|
||||
|
||||
|
374
softfloat/SoftFloat.txt
Normal file
374
softfloat/SoftFloat.txt
Normal file
|
@ -0,0 +1,374 @@
|
|||
|
||||
SoftFloat Release 2b General Documentation
|
||||
|
||||
John R. Hauser
|
||||
2002 May 27
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Introduction
|
||||
|
||||
SoftFloat is a software implementation of floating-point that conforms to
|
||||
the IEC/IEEE Standard for Binary Floating-Point Arithmetic. As many as four
|
||||
formats are supported: single precision, double precision, extended double
|
||||
precision, and quadruple precision. All operations required by the standard
|
||||
are implemented, except for conversions to and from decimal.
|
||||
|
||||
This document gives information about the types defined and the routines
|
||||
implemented by SoftFloat. It does not attempt to define or explain the
|
||||
IEC/IEEE Floating-Point Standard. Details about the standard are available
|
||||
elsewhere.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Limitations
|
||||
|
||||
SoftFloat is written in C and is designed to work with other C code. The
|
||||
SoftFloat header files assume an ISO/ANSI-style C compiler. No attempt
|
||||
has been made to accomodate compilers that are not ISO-conformant. In
|
||||
particular, the distributed header files will not be acceptable to any
|
||||
compiler that does not recognize function prototypes.
|
||||
|
||||
Support for the extended double-precision and quadruple-precision formats
|
||||
depends on a C compiler that implements 64-bit integer arithmetic. If the
|
||||
largest integer format supported by the C compiler is 32 bits, SoftFloat
|
||||
is limited to only single and double precisions. When that is the case,
|
||||
all references in this document to extended double precision, quadruple
|
||||
precision, and 64-bit integers should be ignored.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Contents
|
||||
|
||||
Introduction
|
||||
Limitations
|
||||
Contents
|
||||
Legal Notice
|
||||
Types and Functions
|
||||
Rounding Modes
|
||||
Extended Double-Precision Rounding Precision
|
||||
Exceptions and Exception Flags
|
||||
Function Details
|
||||
Conversion Functions
|
||||
Standard Arithmetic Functions
|
||||
Remainder Functions
|
||||
Round-to-Integer Functions
|
||||
Comparison Functions
|
||||
Signaling NaN Test Functions
|
||||
Raise-Exception Function
|
||||
Contact Information
|
||||
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Legal Notice
|
||||
|
||||
SoftFloat was written by John R. Hauser. This work was made possible in
|
||||
part by the International Computer Science Institute, located at Suite 600,
|
||||
1947 Center Street, Berkeley, California 94704. Funding was partially
|
||||
provided by the National Science Foundation under grant MIP-9311980. The
|
||||
original version of this code was written as part of a project to build
|
||||
a fixed-point vector processor in collaboration with the University of
|
||||
California at Berkeley, overseen by Profs. Nelson Morgan and John Wawrzynek.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL
|
||||
LOSSES, COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO
|
||||
FURTHERMORE EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER
|
||||
SCIENCE INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE
|
||||
SOFTWARE.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Types and Functions
|
||||
|
||||
When 64-bit integers are supported by the compiler, the `softfloat.h'
|
||||
header file defines four types: `float32' (single precision), `float64'
|
||||
(double precision), `floatx80' (extended double precision), and `float128'
|
||||
(quadruple precision). The `float32' and `float64' types are defined in
|
||||
terms of 32-bit and 64-bit integer types, respectively, while the `float128'
|
||||
type is defined as a structure of two 64-bit integers, taking into account
|
||||
the byte order of the particular machine being used. The `floatx80' type
|
||||
is defined as a structure containing one 16-bit and one 64-bit integer, with
|
||||
the machine's byte order again determining the order within the structure.
|
||||
|
||||
When 64-bit integers are _not_ supported by the compiler, the `softfloat.h'
|
||||
header file defines only two types: `float32' and `float64'. Because
|
||||
ISO/ANSI C guarantees at least one built-in integer type of 32 bits,
|
||||
the `float32' type is identified with an appropriate integer type. The
|
||||
`float64' type is defined as a structure of two 32-bit integers, with the
|
||||
machine's byte order determining the order of the fields.
|
||||
|
||||
In either case, the types in `softfloat.h' are defined such that if a system
|
||||
implements the usual C `float' and `double' types according to the IEC/IEEE
|
||||
Standard, then the `float32' and `float64' types should be indistinguishable
|
||||
in memory from the native `float' and `double' types. (On the other hand,
|
||||
when `float32' or `float64' values are placed in processor registers by
|
||||
the compiler, the type of registers used may differ from those used for the
|
||||
native `float' and `double' types.)
|
||||
|
||||
SoftFloat implements the following arithmetic operations:
|
||||
|
||||
-- Conversions among all the floating-point formats, and also between
|
||||
integers (32-bit and 64-bit) and any of the floating-point formats.
|
||||
|
||||
-- The usual add, subtract, multiply, divide, and square root operations
|
||||
for all floating-point formats.
|
||||
|
||||
-- For each format, the floating-point remainder operation defined by the
|
||||
IEC/IEEE Standard.
|
||||
|
||||
-- For each floating-point format, a ``round to integer'' operation that
|
||||
rounds to the nearest integer value in the same format. (The floating-
|
||||
point formats can hold integer values, of course.)
|
||||
|
||||
-- Comparisons between two values in the same floating-point format.
|
||||
|
||||
The only functions required by the IEC/IEEE Standard that are not provided
|
||||
are conversions to and from decimal.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Rounding Modes
|
||||
|
||||
All four rounding modes prescribed by the IEC/IEEE Standard are implemented
|
||||
for all operations that require rounding. The rounding mode is selected
|
||||
by the global variable `float_rounding_mode'. This variable may be set
|
||||
to one of the values `float_round_nearest_even', `float_round_to_zero',
|
||||
`float_round_down', or `float_round_up'. The rounding mode is initialized
|
||||
to nearest/even.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Extended Double-Precision Rounding Precision
|
||||
|
||||
For extended double precision (`floatx80') only, the rounding precision
|
||||
of the standard arithmetic operations is controlled by the global variable
|
||||
`floatx80_rounding_precision'. The operations affected are:
|
||||
|
||||
floatx80_add floatx80_sub floatx80_mul floatx80_div floatx80_sqrt
|
||||
|
||||
When `floatx80_rounding_precision' is set to its default value of 80, these
|
||||
operations are rounded (as usual) to the full precision of the extended
|
||||
double-precision format. Setting `floatx80_rounding_precision' to 32
|
||||
or to 64 causes the operations listed to be rounded to reduced precision
|
||||
equivalent to single precision (`float32') or to double precision
|
||||
(`float64'), respectively. When rounding to reduced precision, additional
|
||||
bits in the result significand beyond the rounding point are set to zero.
|
||||
The consequences of setting `floatx80_rounding_precision' to a value other
|
||||
than 32, 64, or 80 is not specified. Operations other than the ones listed
|
||||
above are not affected by `floatx80_rounding_precision'.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Exceptions and Exception Flags
|
||||
|
||||
All five exception flags required by the IEC/IEEE Standard are
|
||||
implemented. Each flag is stored as a unique bit in the global variable
|
||||
`float_exception_flags'. The positions of the exception flag bits within
|
||||
this variable are determined by the bit masks `float_flag_inexact',
|
||||
`float_flag_underflow', `float_flag_overflow', `float_flag_divbyzero', and
|
||||
`float_flag_invalid'. The exception flags variable is initialized to all 0,
|
||||
meaning no exceptions.
|
||||
|
||||
An individual exception flag can be cleared with the statement
|
||||
|
||||
float_exception_flags &= ~ float_flag_<exception>;
|
||||
|
||||
where `<exception>' is the appropriate name. To raise a floating-point
|
||||
exception, the SoftFloat function `float_raise' should be used (see below).
|
||||
|
||||
In the terminology of the IEC/IEEE Standard, SoftFloat can detect tininess
|
||||
for underflow either before or after rounding. The choice is made by
|
||||
the global variable `float_detect_tininess', which can be set to either
|
||||
`float_tininess_before_rounding' or `float_tininess_after_rounding'.
|
||||
Detecting tininess after rounding is better because it results in fewer
|
||||
spurious underflow signals. The other option is provided for compatibility
|
||||
with some systems. Like most systems, SoftFloat always detects loss of
|
||||
accuracy for underflow as an inexact result.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Function Details
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Conversion Functions
|
||||
|
||||
All conversions among the floating-point formats are supported, as are all
|
||||
conversions between a floating-point format and 32-bit and 64-bit signed
|
||||
integers. The complete set of conversion functions is:
|
||||
|
||||
int32_to_float32 int64_to_float32
|
||||
int32_to_float64 int64_to_float32
|
||||
int32_to_floatx80 int64_to_floatx80
|
||||
int32_to_float128 int64_to_float128
|
||||
|
||||
float32_to_int32 float32_to_int64
|
||||
float32_to_int32 float64_to_int64
|
||||
floatx80_to_int32 floatx80_to_int64
|
||||
float128_to_int32 float128_to_int64
|
||||
|
||||
float32_to_float64 float32_to_floatx80 float32_to_float128
|
||||
float64_to_float32 float64_to_floatx80 float64_to_float128
|
||||
floatx80_to_float32 floatx80_to_float64 floatx80_to_float128
|
||||
float128_to_float32 float128_to_float64 float128_to_floatx80
|
||||
|
||||
Each conversion function takes one operand of the appropriate type and
|
||||
returns one result. Conversions from a smaller to a larger floating-point
|
||||
format are always exact and so require no rounding. Conversions from 32-bit
|
||||
integers to double precision and larger formats are also exact, and likewise
|
||||
for conversions from 64-bit integers to extended double and quadruple
|
||||
precisions.
|
||||
|
||||
Conversions from floating-point to integer raise the invalid exception if
|
||||
the source value cannot be rounded to a representable integer of the desired
|
||||
size (32 or 64 bits). If the floating-point operand is a NaN, the largest
|
||||
positive integer is returned. Otherwise, if the conversion overflows, the
|
||||
largest integer with the same sign as the operand is returned.
|
||||
|
||||
On conversions to integer, if the floating-point operand is not already
|
||||
an integer value, the operand is rounded according to the current rounding
|
||||
mode as specified by `float_rounding_mode'. Because C (and perhaps other
|
||||
languages) require that conversions to integers be rounded toward zero, the
|
||||
following functions are provided for improved speed and convenience:
|
||||
|
||||
float32_to_int32_round_to_zero float32_to_int64_round_to_zero
|
||||
float64_to_int32_round_to_zero float64_to_int64_round_to_zero
|
||||
floatx80_to_int32_round_to_zero floatx80_to_int64_round_to_zero
|
||||
float128_to_int32_round_to_zero float128_to_int64_round_to_zero
|
||||
|
||||
These variant functions ignore `float_rounding_mode' and always round toward
|
||||
zero.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Standard Arithmetic Functions
|
||||
|
||||
The following standard arithmetic functions are provided:
|
||||
|
||||
float32_add float32_sub float32_mul float32_div float32_sqrt
|
||||
float64_add float64_sub float64_mul float64_div float64_sqrt
|
||||
floatx80_add floatx80_sub floatx80_mul floatx80_div floatx80_sqrt
|
||||
float128_add float128_sub float128_mul float128_div float128_sqrt
|
||||
|
||||
Each function takes two operands, except for `sqrt' which takes only one.
|
||||
The operands and result are all of the same type.
|
||||
|
||||
Rounding of the extended double-precision (`floatx80') functions is affected
|
||||
by the `floatx80_rounding_precision' variable, as explained above in the
|
||||
section _Extended Double-Precision Rounding Precision_.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Remainder Functions
|
||||
|
||||
For each format, SoftFloat implements the remainder function according to
|
||||
the IEC/IEEE Standard. The remainder functions are:
|
||||
|
||||
float32_rem
|
||||
float64_rem
|
||||
floatx80_rem
|
||||
float128_rem
|
||||
|
||||
Each remainder function takes two operands. The operands and result are all
|
||||
of the same type. Given operands x and y, the remainder functions return
|
||||
the value x - n*y, where n is the integer closest to x/y. If x/y is exactly
|
||||
halfway between two integers, n is the even integer closest to x/y. The
|
||||
remainder functions are always exact and so require no rounding.
|
||||
|
||||
Depending on the relative magnitudes of the operands, the remainder
|
||||
functions can take considerably longer to execute than the other SoftFloat
|
||||
functions. This is inherent in the remainder operation itself and is not a
|
||||
flaw in the SoftFloat implementation.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Round-to-Integer Functions
|
||||
|
||||
For each format, SoftFloat implements the round-to-integer function
|
||||
specified by the IEC/IEEE Standard. The functions are:
|
||||
|
||||
float32_round_to_int
|
||||
float64_round_to_int
|
||||
floatx80_round_to_int
|
||||
float128_round_to_int
|
||||
|
||||
Each function takes a single floating-point operand and returns a result of
|
||||
the same type. (Note that the result is not an integer type.) The operand
|
||||
is rounded to an exact integer according to the current rounding mode, and
|
||||
the resulting integer value is returned in the same floating-point format.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Comparison Functions
|
||||
|
||||
The following floating-point comparison functions are provided:
|
||||
|
||||
float32_eq float32_le float32_lt
|
||||
float64_eq float64_le float64_lt
|
||||
floatx80_eq floatx80_le floatx80_lt
|
||||
float128_eq float128_le float128_lt
|
||||
|
||||
Each function takes two operands of the same type and returns a 1 or 0
|
||||
representing either _true_ or _false_. The abbreviation `eq' stands for
|
||||
``equal'' (=); `le' stands for ``less than or equal'' (<=); and `lt' stands
|
||||
for ``less than'' (<).
|
||||
|
||||
The standard greater-than (>), greater-than-or-equal (>=), and not-equal
|
||||
(!=) functions are easily obtained using the functions provided. The
|
||||
not-equal function is just the logical complement of the equal function.
|
||||
The greater-than-or-equal function is identical to the less-than-or-equal
|
||||
function with the operands reversed, and the greater-than function is
|
||||
identical to the less-than function with the operands reversed.
|
||||
|
||||
The IEC/IEEE Standard specifies that the less-than-or-equal and less-than
|
||||
functions raise the invalid exception if either input is any kind of NaN.
|
||||
The equal functions, on the other hand, are defined not to raise the invalid
|
||||
exception on quiet NaNs. For completeness, SoftFloat provides the following
|
||||
additional functions:
|
||||
|
||||
float32_eq_signaling float32_le_quiet float32_lt_quiet
|
||||
float64_eq_signaling float64_le_quiet float64_lt_quiet
|
||||
floatx80_eq_signaling floatx80_le_quiet floatx80_lt_quiet
|
||||
float128_eq_signaling float128_le_quiet float128_lt_quiet
|
||||
|
||||
The `signaling' equal functions are identical to the standard functions
|
||||
except that the invalid exception is raised for any NaN input. Likewise,
|
||||
the `quiet' comparison functions are identical to their counterparts except
|
||||
that the invalid exception is not raised for quiet NaNs.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Signaling NaN Test Functions
|
||||
|
||||
The following functions test whether a floating-point value is a signaling
|
||||
NaN:
|
||||
|
||||
float32_is_signaling_nan
|
||||
float64_is_signaling_nan
|
||||
floatx80_is_signaling_nan
|
||||
float128_is_signaling_nan
|
||||
|
||||
The functions take one operand and return 1 if the operand is a signaling
|
||||
NaN and 0 otherwise.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
Raise-Exception Function
|
||||
|
||||
SoftFloat provides a function for raising floating-point exceptions:
|
||||
|
||||
float_raise
|
||||
|
||||
The function takes a mask indicating the set of exceptions to raise. No
|
||||
result is returned. In addition to setting the specified exception flags,
|
||||
this function may cause a trap or abort appropriate for the current system.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Contact Information
|
||||
|
||||
At the time of this writing, the most up-to-date information about
|
||||
SoftFloat and the latest release can be found at the Web page `http://
|
||||
www.cs.berkeley.edu/~jhauser/arithmetic/SoftFloat.html'.
|
||||
|
||||
|
720
softfloat/softfloat-macros
Normal file
720
softfloat/softfloat-macros
Normal file
|
@ -0,0 +1,720 @@
|
|||
|
||||
/*============================================================================
|
||||
|
||||
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2b.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
||||
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
||||
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
||||
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
||||
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
||||
INSTITUTE (possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR
|
||||
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) the source code for the derivative work includes prominent notice that
|
||||
the work is derivative, and (2) the source code includes prominent notice with
|
||||
these four paragraphs for those parts of this code that are retained.
|
||||
|
||||
=============================================================================*/
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts `a' right by the number of bits given in `count'. If any nonzero
|
||||
| bits are shifted off, they are ``jammed'' into the least significant bit of
|
||||
| the result by setting the least significant bit to 1. The value of `count'
|
||||
| can be arbitrarily large; in particular, if `count' is greater than 32, the
|
||||
| result will be either 0 or 1, depending on whether `a' is zero or nonzero.
|
||||
| The result is stored in the location pointed to by `zPtr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
|
||||
{
|
||||
bits32 z;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z = a;
|
||||
}
|
||||
else if ( count < 32 ) {
|
||||
z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
|
||||
}
|
||||
else {
|
||||
z = ( a != 0 );
|
||||
}
|
||||
*zPtr = z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts `a' right by the number of bits given in `count'. If any nonzero
|
||||
| bits are shifted off, they are ``jammed'' into the least significant bit of
|
||||
| the result by setting the least significant bit to 1. The value of `count'
|
||||
| can be arbitrarily large; in particular, if `count' is greater than 64, the
|
||||
| result will be either 0 or 1, depending on whether `a' is zero or nonzero.
|
||||
| The result is stored in the location pointed to by `zPtr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr )
|
||||
{
|
||||
bits64 z;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z = a;
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 );
|
||||
}
|
||||
else {
|
||||
z = ( a != 0 );
|
||||
}
|
||||
*zPtr = z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64
|
||||
| _plus_ the number of bits given in `count'. The shifted result is at most
|
||||
| 64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The
|
||||
| bits shifted off form a second 64-bit result as follows: The _last_ bit
|
||||
| shifted off is the most-significant bit of the extra result, and the other
|
||||
| 63 bits of the extra result are all zero if and only if _all_but_the_last_
|
||||
| bits shifted off were all zero. This extra result is stored in the location
|
||||
| pointed to by `z1Ptr'. The value of `count' can be arbitrarily large.
|
||||
| (This routine makes more sense if `a0' and `a1' are considered to form
|
||||
| a fixed-point value with binary point between `a0' and `a1'. This fixed-
|
||||
| point value is shifted right by the number of bits given in `count', and
|
||||
| the integer part of the result is returned at the location pointed to by
|
||||
| `z0Ptr'. The fractional part of the result may be slightly corrupted as
|
||||
| described above, and is returned at the location pointed to by `z1Ptr'.)
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
shift64ExtraRightJamming(
|
||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits64 z0, z1;
|
||||
int8 negCount = ( - count ) & 63;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z1 = ( a0<<negCount ) | ( a1 != 0 );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
if ( count == 64 ) {
|
||||
z1 = a0 | ( a1 != 0 );
|
||||
}
|
||||
else {
|
||||
z1 = ( ( a0 | a1 ) != 0 );
|
||||
}
|
||||
z0 = 0;
|
||||
}
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
|
||||
| number of bits given in `count'. Any bits shifted off are lost. The value
|
||||
| of `count' can be arbitrarily large; in particular, if `count' is greater
|
||||
| than 128, the result will be 0. The result is broken into two 64-bit pieces
|
||||
| which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
shift128Right(
|
||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits64 z0, z1;
|
||||
int8 negCount = ( - count ) & 63;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z1 = ( a0<<negCount ) | ( a1>>count );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0;
|
||||
z0 = 0;
|
||||
}
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
|
||||
| number of bits given in `count'. If any nonzero bits are shifted off, they
|
||||
| are ``jammed'' into the least significant bit of the result by setting the
|
||||
| least significant bit to 1. The value of `count' can be arbitrarily large;
|
||||
| in particular, if `count' is greater than 128, the result will be either
|
||||
| 0 or 1, depending on whether the concatenation of `a0' and `a1' is zero or
|
||||
| nonzero. The result is broken into two 64-bit pieces which are stored at
|
||||
| the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
shift128RightJamming(
|
||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits64 z0, z1;
|
||||
int8 negCount = ( - count ) & 63;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
if ( count == 64 ) {
|
||||
z1 = a0 | ( a1 != 0 );
|
||||
}
|
||||
else if ( count < 128 ) {
|
||||
z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );
|
||||
}
|
||||
else {
|
||||
z1 = ( ( a0 | a1 ) != 0 );
|
||||
}
|
||||
z0 = 0;
|
||||
}
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right
|
||||
| by 64 _plus_ the number of bits given in `count'. The shifted result is
|
||||
| at most 128 nonzero bits; these are broken into two 64-bit pieces which are
|
||||
| stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
|
||||
| off form a third 64-bit result as follows: The _last_ bit shifted off is
|
||||
| the most-significant bit of the extra result, and the other 63 bits of the
|
||||
| extra result are all zero if and only if _all_but_the_last_ bits shifted off
|
||||
| were all zero. This extra result is stored in the location pointed to by
|
||||
| `z2Ptr'. The value of `count' can be arbitrarily large.
|
||||
| (This routine makes more sense if `a0', `a1', and `a2' are considered
|
||||
| to form a fixed-point value with binary point between `a1' and `a2'. This
|
||||
| fixed-point value is shifted right by the number of bits given in `count',
|
||||
| and the integer part of the result is returned at the locations pointed to
|
||||
| by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
|
||||
| corrupted as described above, and is returned at the location pointed to by
|
||||
| `z2Ptr'.)
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
shift128ExtraRightJamming(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 a2,
|
||||
int16 count,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2;
|
||||
int8 negCount = ( - count ) & 63;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z2 = a2;
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else {
|
||||
if ( count < 64 ) {
|
||||
z2 = a1<<negCount;
|
||||
z1 = ( a0<<negCount ) | ( a1>>count );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
if ( count == 64 ) {
|
||||
z2 = a1;
|
||||
z1 = a0;
|
||||
}
|
||||
else {
|
||||
a2 |= a1;
|
||||
if ( count < 128 ) {
|
||||
z2 = a0<<negCount;
|
||||
z1 = a0>>( count & 63 );
|
||||
}
|
||||
else {
|
||||
z2 = ( count == 128 ) ? a0 : ( a0 != 0 );
|
||||
z1 = 0;
|
||||
}
|
||||
}
|
||||
z0 = 0;
|
||||
}
|
||||
z2 |= ( a2 != 0 );
|
||||
}
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the
|
||||
| number of bits given in `count'. Any bits shifted off are lost. The value
|
||||
| of `count' must be less than 64. The result is broken into two 64-bit
|
||||
| pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
shortShift128Left(
|
||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
|
||||
*z1Ptr = a1<<count;
|
||||
*z0Ptr =
|
||||
( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left
|
||||
| by the number of bits given in `count'. Any bits shifted off are lost.
|
||||
| The value of `count' must be less than 64. The result is broken into three
|
||||
| 64-bit pieces which are stored at the locations pointed to by `z0Ptr',
|
||||
| `z1Ptr', and `z2Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
shortShift192Left(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 a2,
|
||||
int16 count,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2;
|
||||
int8 negCount;
|
||||
|
||||
z2 = a2<<count;
|
||||
z1 = a1<<count;
|
||||
z0 = a0<<count;
|
||||
if ( 0 < count ) {
|
||||
negCount = ( ( - count ) & 63 );
|
||||
z1 |= a2>>negCount;
|
||||
z0 |= a1>>negCount;
|
||||
}
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit
|
||||
| value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so
|
||||
| any carry out is lost. The result is broken into two 64-bit pieces which
|
||||
| are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
add128(
|
||||
bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits64 z1;
|
||||
|
||||
z1 = a1 + b1;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = a0 + b0 + ( z1 < a1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the
|
||||
| 192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
|
||||
| modulo 2^192, so any carry out is lost. The result is broken into three
|
||||
| 64-bit pieces which are stored at the locations pointed to by `z0Ptr',
|
||||
| `z1Ptr', and `z2Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
add192(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 a2,
|
||||
bits64 b0,
|
||||
bits64 b1,
|
||||
bits64 b2,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2;
|
||||
int8 carry0, carry1;
|
||||
|
||||
z2 = a2 + b2;
|
||||
carry1 = ( z2 < a2 );
|
||||
z1 = a1 + b1;
|
||||
carry0 = ( z1 < a1 );
|
||||
z0 = a0 + b0;
|
||||
z1 += carry1;
|
||||
z0 += ( z1 < carry1 );
|
||||
z0 += carry0;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the
|
||||
| 128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
|
||||
| 2^128, so any borrow out (carry out) is lost. The result is broken into two
|
||||
| 64-bit pieces which are stored at the locations pointed to by `z0Ptr' and
|
||||
| `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
sub128(
|
||||
bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
|
||||
*z1Ptr = a1 - b1;
|
||||
*z0Ptr = a0 - b0 - ( a1 < b1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2'
|
||||
| from the 192-bit value formed by concatenating `a0', `a1', and `a2'.
|
||||
| Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The
|
||||
| result is broken into three 64-bit pieces which are stored at the locations
|
||||
| pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
sub192(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 a2,
|
||||
bits64 b0,
|
||||
bits64 b1,
|
||||
bits64 b2,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2;
|
||||
int8 borrow0, borrow1;
|
||||
|
||||
z2 = a2 - b2;
|
||||
borrow1 = ( a2 < b2 );
|
||||
z1 = a1 - b1;
|
||||
borrow0 = ( a1 < b1 );
|
||||
z0 = a0 - b0;
|
||||
z0 -= ( z1 < borrow1 );
|
||||
z1 -= borrow1;
|
||||
z0 -= borrow0;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Multiplies `a' by `b' to obtain a 128-bit product. The product is broken
|
||||
| into two 64-bit pieces which are stored at the locations pointed to by
|
||||
| `z0Ptr' and `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits32 aHigh, aLow, bHigh, bLow;
|
||||
bits64 z0, zMiddleA, zMiddleB, z1;
|
||||
|
||||
aLow = a;
|
||||
aHigh = a>>32;
|
||||
bLow = b;
|
||||
bHigh = b>>32;
|
||||
z1 = ( (bits64) aLow ) * bLow;
|
||||
zMiddleA = ( (bits64) aLow ) * bHigh;
|
||||
zMiddleB = ( (bits64) aHigh ) * bLow;
|
||||
z0 = ( (bits64) aHigh ) * bHigh;
|
||||
zMiddleA += zMiddleB;
|
||||
z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 );
|
||||
zMiddleA <<= 32;
|
||||
z1 += zMiddleA;
|
||||
z0 += ( z1 < zMiddleA );
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Multiplies the 128-bit value formed by concatenating `a0' and `a1' by
|
||||
| `b' to obtain a 192-bit product. The product is broken into three 64-bit
|
||||
| pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
|
||||
| `z2Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
mul128By64To192(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 b,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2, more1;
|
||||
|
||||
mul64To128( a1, b, &z1, &z2 );
|
||||
mul64To128( a0, b, &z0, &more1 );
|
||||
add128( z0, more1, 0, z1, &z0, &z1 );
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the
|
||||
| 128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit
|
||||
| product. The product is broken into four 64-bit pieces which are stored at
|
||||
| the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
mul128To256(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 b0,
|
||||
bits64 b1,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr,
|
||||
bits64 *z3Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2, z3;
|
||||
bits64 more1, more2;
|
||||
|
||||
mul64To128( a1, b1, &z2, &z3 );
|
||||
mul64To128( a1, b0, &z1, &more2 );
|
||||
add128( z1, more2, 0, z2, &z1, &z2 );
|
||||
mul64To128( a0, b0, &z0, &more1 );
|
||||
add128( z0, more1, 0, z1, &z0, &z1 );
|
||||
mul64To128( a0, b1, &more1, &more2 );
|
||||
add128( more1, more2, 0, z2, &more1, &z2 );
|
||||
add128( z0, z1, 0, more1, &z0, &z1 );
|
||||
*z3Ptr = z3;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns an approximation to the 64-bit integer quotient obtained by dividing
|
||||
| `b' into the 128-bit value formed by concatenating `a0' and `a1'. The
|
||||
| divisor `b' must be at least 2^63. If q is the exact quotient truncated
|
||||
| toward zero, the approximation returned lies between q and q + 2 inclusive.
|
||||
| If the exact quotient q is larger than 64 bits, the maximum positive 64-bit
|
||||
| unsigned integer is returned.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b )
|
||||
{
|
||||
bits64 b0, b1;
|
||||
bits64 rem0, rem1, term0, term1;
|
||||
bits64 z;
|
||||
|
||||
if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF );
|
||||
b0 = b>>32;
|
||||
z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32;
|
||||
mul64To128( b, z, &term0, &term1 );
|
||||
sub128( a0, a1, term0, term1, &rem0, &rem1 );
|
||||
while ( ( (sbits64) rem0 ) < 0 ) {
|
||||
z -= LIT64( 0x100000000 );
|
||||
b1 = b<<32;
|
||||
add128( rem0, rem1, b0, b1, &rem0, &rem1 );
|
||||
}
|
||||
rem0 = ( rem0<<32 ) | ( rem1>>32 );
|
||||
z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns an approximation to the square root of the 32-bit significand given
|
||||
| by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
|
||||
| `aExp' (the least significant bit) is 1, the integer returned approximates
|
||||
| 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
|
||||
| is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
|
||||
| case, the approximation returned lies strictly within +/-2 of the exact
|
||||
| value.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static bits32 estimateSqrt32( int16 aExp, bits32 a )
|
||||
{
|
||||
static const bits16 sqrtOddAdjustments[] = {
|
||||
0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
|
||||
0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
|
||||
};
|
||||
static const bits16 sqrtEvenAdjustments[] = {
|
||||
0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
|
||||
0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
|
||||
};
|
||||
int8 index;
|
||||
bits32 z;
|
||||
|
||||
index = ( a>>27 ) & 15;
|
||||
if ( aExp & 1 ) {
|
||||
z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];
|
||||
z = ( ( a / z )<<14 ) + ( z<<15 );
|
||||
a >>= 1;
|
||||
}
|
||||
else {
|
||||
z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];
|
||||
z = a / z + z;
|
||||
z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
|
||||
if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
|
||||
}
|
||||
return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the number of leading 0 bits before the most-significant 1 bit of
|
||||
| `a'. If `a' is zero, 32 is returned.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static int8 countLeadingZeros32( bits32 a )
|
||||
{
|
||||
static const int8 countLeadingZerosHigh[] = {
|
||||
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
|
||||
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||||
};
|
||||
int8 shiftCount;
|
||||
|
||||
shiftCount = 0;
|
||||
if ( a < 0x10000 ) {
|
||||
shiftCount += 16;
|
||||
a <<= 16;
|
||||
}
|
||||
if ( a < 0x1000000 ) {
|
||||
shiftCount += 8;
|
||||
a <<= 8;
|
||||
}
|
||||
shiftCount += countLeadingZerosHigh[ a>>24 ];
|
||||
return shiftCount;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the number of leading 0 bits before the most-significant 1 bit of
|
||||
| `a'. If `a' is zero, 64 is returned.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static int8 countLeadingZeros64( bits64 a )
|
||||
{
|
||||
int8 shiftCount;
|
||||
|
||||
shiftCount = 0;
|
||||
if ( a < ( (bits64) 1 )<<32 ) {
|
||||
shiftCount += 32;
|
||||
}
|
||||
else {
|
||||
a >>= 32;
|
||||
}
|
||||
shiftCount += countLeadingZeros32( a );
|
||||
return shiftCount;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1'
|
||||
| is equal to the 128-bit value formed by concatenating `b0' and `b1'.
|
||||
| Otherwise, returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
||||
{
|
||||
|
||||
return ( a0 == b0 ) && ( a1 == b1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
|
||||
| than or equal to the 128-bit value formed by concatenating `b0' and `b1'.
|
||||
| Otherwise, returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
||||
{
|
||||
|
||||
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
|
||||
| than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise,
|
||||
| returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
||||
{
|
||||
|
||||
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is
|
||||
| not equal to the 128-bit value formed by concatenating `b0' and `b1'.
|
||||
| Otherwise, returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
||||
{
|
||||
|
||||
return ( a0 != b0 ) || ( a1 != b1 );
|
||||
|
||||
}
|
||||
|
5188
softfloat/softfloat.c
Normal file
5188
softfloat/softfloat.c
Normal file
File diff suppressed because it is too large
Load diff
28
softfloat/templates/Makefile
Normal file
28
softfloat/templates/Makefile
Normal file
|
@ -0,0 +1,28 @@
|
|||
|
||||
PROCESSOR_H = ../../../processors/!!!processor.h
|
||||
SOFTFLOAT_MACROS = ../softfloat-macros
|
||||
|
||||
OBJ = .o
|
||||
EXE =
|
||||
INCLUDES = -I. -I..
|
||||
COMPILE_C = gcc -c -o $@ $(INCLUDES) -I- -O2
|
||||
LINK = gcc -o $@
|
||||
|
||||
#-----------------------------------------------------------------------------
|
||||
# Probably okay below here.
|
||||
#-----------------------------------------------------------------------------
|
||||
|
||||
ALL: softfloat$(OBJ) timesoftfloat$(EXE)
|
||||
|
||||
milieu.h: $(PROCESSOR_H)
|
||||
touch milieu.h
|
||||
|
||||
softfloat$(OBJ): milieu.h softfloat.h softfloat-specialize $(SOFTFLOAT_MACROS) ../softfloat.c
|
||||
$(COMPILE_C) ../softfloat.c
|
||||
|
||||
timesoftfloat$(OBJ): milieu.h softfloat.h ../timesoftfloat.c
|
||||
$(COMPILE_C) ../timesoftfloat.c
|
||||
|
||||
timesoftfloat$(EXE): softfloat$(OBJ) timesoftfloat$(OBJ)
|
||||
$(LINK) softfloat$(OBJ) timesoftfloat$(OBJ)
|
||||
|
45
softfloat/templates/milieu.h
Normal file
45
softfloat/templates/milieu.h
Normal file
|
@ -0,0 +1,45 @@
|
|||
|
||||
/*============================================================================
|
||||
|
||||
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
|
||||
Package, Release 2b.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
||||
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
||||
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
||||
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
||||
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
||||
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
||||
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) the source code for the derivative work includes prominent notice that
|
||||
the work is derivative, and (2) the source code includes prominent notice with
|
||||
these four paragraphs for those parts of this code that are retained.
|
||||
|
||||
=============================================================================*/
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Include common integer types and flags.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#include "../../../processors/!!!processor.h"
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Symbolic Boolean literals.
|
||||
*----------------------------------------------------------------------------*/
|
||||
enum {
|
||||
FALSE = 0,
|
||||
TRUE = 1
|
||||
};
|
||||
|
432
softfloat/templates/softfloat-specialize
Normal file
432
softfloat/templates/softfloat-specialize
Normal file
|
@ -0,0 +1,432 @@
|
|||
|
||||
/*============================================================================
|
||||
|
||||
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2b.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
||||
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
||||
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
||||
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
||||
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
||||
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
||||
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) the source code for the derivative work includes prominent notice that
|
||||
the work is derivative, and (2) the source code includes prominent notice with
|
||||
these four paragraphs for those parts of this code that are retained.
|
||||
|
||||
=============================================================================*/
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Underflow tininess-detection mode, statically initialized to default value.
|
||||
| (The declaration in `softfloat.h' must match the `int8' type here.)
|
||||
*----------------------------------------------------------------------------*/
|
||||
int8 float_detect_tininess = float_tininess_after_rounding;
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Raises the exceptions specified by `flags'. Floating-point traps can be
|
||||
| defined here if desired. It is currently not possible for such a trap to
|
||||
| substitute a result value. If traps are not implemented, this routine
|
||||
| should be simply `float_exception_flags |= flags;'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
void float_raise( int8 flags )
|
||||
{
|
||||
|
||||
float_exception_flags |= flags;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Internal canonical NaN format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
typedef struct {
|
||||
flag sign;
|
||||
bits64 high, low;
|
||||
} commonNaNT;
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated single-precision NaN.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define float32_default_nan 0xFFFFFFFF
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the single-precision floating-point value `a' is a NaN;
|
||||
| otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float32_is_nan( float32 a )
|
||||
{
|
||||
|
||||
return ( 0xFF000000 < (bits32) ( a<<1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the single-precision floating-point value `a' is a signaling
|
||||
| NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float32_is_signaling_nan( float32 a )
|
||||
{
|
||||
|
||||
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the single-precision floating-point NaN
|
||||
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
| exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static commonNaNT float32ToCommonNaN( float32 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a>>31;
|
||||
z.low = 0;
|
||||
z.high = ( (bits64) a )<<41;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the canonical NaN `a' to the single-
|
||||
| precision floating-point format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float32 commonNaNToFloat32( commonNaNT a )
|
||||
{
|
||||
|
||||
return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes two single-precision floating-point values `a' and `b', one of which
|
||||
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
||||
| signaling NaN, the invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float32 propagateFloat32NaN( float32 a, float32 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float32_is_nan( a );
|
||||
aIsSignalingNaN = float32_is_signaling_nan( a );
|
||||
bIsNaN = float32_is_nan( b );
|
||||
bIsSignalingNaN = float32_is_signaling_nan( b );
|
||||
a |= 0x00400000;
|
||||
b |= 0x00400000;
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated double-precision NaN.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the double-precision floating-point value `a' is a NaN;
|
||||
| otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float64_is_nan( float64 a )
|
||||
{
|
||||
|
||||
return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the double-precision floating-point value `a' is a signaling
|
||||
| NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float64_is_signaling_nan( float64 a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
|
||||
&& ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the double-precision floating-point NaN
|
||||
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
| exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static commonNaNT float64ToCommonNaN( float64 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a>>63;
|
||||
z.low = 0;
|
||||
z.high = a<<12;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the canonical NaN `a' to the double-
|
||||
| precision floating-point format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float64 commonNaNToFloat64( commonNaNT a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( (bits64) a.sign )<<63 )
|
||||
| LIT64( 0x7FF8000000000000 )
|
||||
| ( a.high>>12 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes two double-precision floating-point values `a' and `b', one of which
|
||||
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
||||
| signaling NaN, the invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float64 propagateFloat64NaN( float64 a, float64 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float64_is_nan( a );
|
||||
aIsSignalingNaN = float64_is_signaling_nan( a );
|
||||
bIsNaN = float64_is_nan( b );
|
||||
bIsSignalingNaN = float64_is_signaling_nan( b );
|
||||
a |= LIT64( 0x0008000000000000 );
|
||||
b |= LIT64( 0x0008000000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#ifdef FLOATX80
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated extended double-precision NaN. The
|
||||
| `high' and `low' values hold the most- and least-significant bits,
|
||||
| respectively.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define floatx80_default_nan_high 0xFFFF
|
||||
#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the extended double-precision floating-point value `a' is a
|
||||
| NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag floatx80_is_nan( floatx80 a )
|
||||
{
|
||||
|
||||
return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the extended double-precision floating-point value `a' is a
|
||||
| signaling NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag floatx80_is_signaling_nan( floatx80 a )
|
||||
{
|
||||
bits64 aLow;
|
||||
|
||||
aLow = a.low & ~ LIT64( 0x4000000000000000 );
|
||||
return
|
||||
( ( a.high & 0x7FFF ) == 0x7FFF )
|
||||
&& (bits64) ( aLow<<1 )
|
||||
&& ( a.low == aLow );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the extended double-precision floating-
|
||||
| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
|
||||
| invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static commonNaNT floatx80ToCommonNaN( floatx80 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a.high>>15;
|
||||
z.low = 0;
|
||||
z.high = a.low<<1;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the canonical NaN `a' to the extended
|
||||
| double-precision floating-point format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static floatx80 commonNaNToFloatx80( commonNaNT a )
|
||||
{
|
||||
floatx80 z;
|
||||
|
||||
z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
|
||||
z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes two extended double-precision floating-point values `a' and `b', one
|
||||
| of which is a NaN, and returns the appropriate NaN result. If either `a' or
|
||||
| `b' is a signaling NaN, the invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = floatx80_is_nan( a );
|
||||
aIsSignalingNaN = floatx80_is_signaling_nan( a );
|
||||
bIsNaN = floatx80_is_nan( b );
|
||||
bIsSignalingNaN = floatx80_is_signaling_nan( b );
|
||||
a.low |= LIT64( 0xC000000000000000 );
|
||||
b.low |= LIT64( 0xC000000000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef FLOAT128
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated quadruple-precision NaN. The `high' and
|
||||
| `low' values hold the most- and least-significant bits, respectively.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
|
||||
| otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float128_is_nan( float128 a )
|
||||
{
|
||||
|
||||
return
|
||||
( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
|
||||
&& ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the quadruple-precision floating-point value `a' is a
|
||||
| signaling NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float128_is_signaling_nan( float128 a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
|
||||
&& ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the quadruple-precision floating-point NaN
|
||||
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
| exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static commonNaNT float128ToCommonNaN( float128 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a.high>>63;
|
||||
shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the canonical NaN `a' to the quadruple-
|
||||
| precision floating-point format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float128 commonNaNToFloat128( commonNaNT a )
|
||||
{
|
||||
float128 z;
|
||||
|
||||
shift128Right( a.high, a.low, 16, &z.high, &z.low );
|
||||
z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes two quadruple-precision floating-point values `a' and `b', one of
|
||||
| which is a NaN, and returns the appropriate NaN result. If either `a' or
|
||||
| `b' is a signaling NaN, the invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float128 propagateFloat128NaN( float128 a, float128 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float128_is_nan( a );
|
||||
aIsSignalingNaN = float128_is_signaling_nan( a );
|
||||
bIsNaN = float128_is_nan( b );
|
||||
bIsSignalingNaN = float128_is_signaling_nan( b );
|
||||
a.high |= LIT64( 0x0000800000000000 );
|
||||
b.high |= LIT64( 0x0000800000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
259
softfloat/templates/softfloat.h
Normal file
259
softfloat/templates/softfloat.h
Normal file
|
@ -0,0 +1,259 @@
|
|||
|
||||
/*============================================================================
|
||||
|
||||
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
|
||||
Package, Release 2b.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
||||
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
||||
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
||||
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
||||
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
||||
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
||||
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) the source code for the derivative work includes prominent notice that
|
||||
the work is derivative, and (2) the source code includes prominent notice with
|
||||
these four paragraphs for those parts of this code that are retained.
|
||||
|
||||
=============================================================================*/
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The macro `FLOATX80' must be defined to enable the extended double-precision
|
||||
| floating-point format `floatx80'. If this macro is not defined, the
|
||||
| `floatx80' type will not be defined, and none of the functions that either
|
||||
| input or output the `floatx80' type will be defined. The same applies to
|
||||
| the `FLOAT128' macro and the quadruple-precision format `float128'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define FLOATX80
|
||||
#define FLOAT128
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point types.
|
||||
*----------------------------------------------------------------------------*/
|
||||
typedef !!!bits32 float32;
|
||||
typedef !!!bits64 float64;
|
||||
#ifdef FLOATX80
|
||||
typedef struct {
|
||||
!!!bits16 high;
|
||||
!!!bits64 low;
|
||||
} floatx80;
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
typedef struct {
|
||||
!!!bits64 high, low;
|
||||
} float128;
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point underflow tininess-detection mode.
|
||||
*----------------------------------------------------------------------------*/
|
||||
extern !!!int8 float_detect_tininess;
|
||||
enum {
|
||||
float_tininess_after_rounding = 0,
|
||||
float_tininess_before_rounding = 1
|
||||
};
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point rounding mode.
|
||||
*----------------------------------------------------------------------------*/
|
||||
extern !!!int8 float_rounding_mode;
|
||||
enum {
|
||||
float_round_nearest_even = 0,
|
||||
float_round_to_zero = 1,
|
||||
float_round_down = 2,
|
||||
float_round_up = 3
|
||||
};
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point exception flags.
|
||||
*----------------------------------------------------------------------------*/
|
||||
extern !!!int8 float_exception_flags;
|
||||
enum {
|
||||
float_flag_inexact = 1,
|
||||
float_flag_underflow = 2,
|
||||
float_flag_overflow = 4,
|
||||
float_flag_divbyzero = 8,
|
||||
float_flag_invalid = 16
|
||||
};
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Routine to raise any or all of the software IEC/IEEE floating-point
|
||||
| exception flags.
|
||||
*----------------------------------------------------------------------------*/
|
||||
void float_raise( !!!int8 );
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE integer-to-floating-point conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float32 int32_to_float32( !!!int32 );
|
||||
float64 int32_to_float64( !!!int32 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 int32_to_floatx80( !!!int32 );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 int32_to_float128( !!!int32 );
|
||||
#endif
|
||||
float32 int64_to_float32( !!!int64 );
|
||||
float64 int64_to_float64( !!!int64 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 int64_to_floatx80( !!!int64 );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 int64_to_float128( !!!int64 );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE single-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
!!!int32 float32_to_int32( float32 );
|
||||
!!!int32 float32_to_int32_round_to_zero( float32 );
|
||||
!!!int64 float32_to_int64( float32 );
|
||||
!!!int64 float32_to_int64_round_to_zero( float32 );
|
||||
float64 float32_to_float64( float32 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float32_to_floatx80( float32 );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 float32_to_float128( float32 );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE single-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float32 float32_round_to_int( float32 );
|
||||
float32 float32_add( float32, float32 );
|
||||
float32 float32_sub( float32, float32 );
|
||||
float32 float32_mul( float32, float32 );
|
||||
float32 float32_div( float32, float32 );
|
||||
float32 float32_rem( float32, float32 );
|
||||
float32 float32_sqrt( float32 );
|
||||
!!!flag float32_eq( float32, float32 );
|
||||
!!!flag float32_le( float32, float32 );
|
||||
!!!flag float32_lt( float32, float32 );
|
||||
!!!flag float32_eq_signaling( float32, float32 );
|
||||
!!!flag float32_le_quiet( float32, float32 );
|
||||
!!!flag float32_lt_quiet( float32, float32 );
|
||||
!!!flag float32_is_signaling_nan( float32 );
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE double-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
!!!int32 float64_to_int32( float64 );
|
||||
!!!int32 float64_to_int32_round_to_zero( float64 );
|
||||
!!!int64 float64_to_int64( float64 );
|
||||
!!!int64 float64_to_int64_round_to_zero( float64 );
|
||||
float32 float64_to_float32( float64 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float64_to_floatx80( float64 );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 float64_to_float128( float64 );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE double-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float64 float64_round_to_int( float64 );
|
||||
float64 float64_add( float64, float64 );
|
||||
float64 float64_sub( float64, float64 );
|
||||
float64 float64_mul( float64, float64 );
|
||||
float64 float64_div( float64, float64 );
|
||||
float64 float64_rem( float64, float64 );
|
||||
float64 float64_sqrt( float64 );
|
||||
!!!flag float64_eq( float64, float64 );
|
||||
!!!flag float64_le( float64, float64 );
|
||||
!!!flag float64_lt( float64, float64 );
|
||||
!!!flag float64_eq_signaling( float64, float64 );
|
||||
!!!flag float64_le_quiet( float64, float64 );
|
||||
!!!flag float64_lt_quiet( float64, float64 );
|
||||
!!!flag float64_is_signaling_nan( float64 );
|
||||
|
||||
#ifdef FLOATX80
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
!!!int32 floatx80_to_int32( floatx80 );
|
||||
!!!int32 floatx80_to_int32_round_to_zero( floatx80 );
|
||||
!!!int64 floatx80_to_int64( floatx80 );
|
||||
!!!int64 floatx80_to_int64_round_to_zero( floatx80 );
|
||||
float32 floatx80_to_float32( floatx80 );
|
||||
float64 floatx80_to_float64( floatx80 );
|
||||
#ifdef FLOAT128
|
||||
float128 floatx80_to_float128( floatx80 );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision rounding precision. Valid
|
||||
| values are 32, 64, and 80.
|
||||
*----------------------------------------------------------------------------*/
|
||||
extern !!!int8 floatx80_rounding_precision;
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
floatx80 floatx80_round_to_int( floatx80 );
|
||||
floatx80 floatx80_add( floatx80, floatx80 );
|
||||
floatx80 floatx80_sub( floatx80, floatx80 );
|
||||
floatx80 floatx80_mul( floatx80, floatx80 );
|
||||
floatx80 floatx80_div( floatx80, floatx80 );
|
||||
floatx80 floatx80_rem( floatx80, floatx80 );
|
||||
floatx80 floatx80_sqrt( floatx80 );
|
||||
!!!flag floatx80_eq( floatx80, floatx80 );
|
||||
!!!flag floatx80_le( floatx80, floatx80 );
|
||||
!!!flag floatx80_lt( floatx80, floatx80 );
|
||||
!!!flag floatx80_eq_signaling( floatx80, floatx80 );
|
||||
!!!flag floatx80_le_quiet( floatx80, floatx80 );
|
||||
!!!flag floatx80_lt_quiet( floatx80, floatx80 );
|
||||
!!!flag floatx80_is_signaling_nan( floatx80 );
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef FLOAT128
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE quadruple-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
!!!int32 float128_to_int32( float128 );
|
||||
!!!int32 float128_to_int32_round_to_zero( float128 );
|
||||
!!!int64 float128_to_int64( float128 );
|
||||
!!!int64 float128_to_int64_round_to_zero( float128 );
|
||||
float32 float128_to_float32( float128 );
|
||||
float64 float128_to_float64( float128 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float128_to_floatx80( float128 );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE quadruple-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float128 float128_round_to_int( float128 );
|
||||
float128 float128_add( float128, float128 );
|
||||
float128 float128_sub( float128, float128 );
|
||||
float128 float128_mul( float128, float128 );
|
||||
float128 float128_div( float128, float128 );
|
||||
float128 float128_rem( float128, float128 );
|
||||
float128 float128_sqrt( float128 );
|
||||
!!!flag float128_eq( float128, float128 );
|
||||
!!!flag float128_le( float128, float128 );
|
||||
!!!flag float128_lt( float128, float128 );
|
||||
!!!flag float128_eq_signaling( float128, float128 );
|
||||
!!!flag float128_le_quiet( float128, float128 );
|
||||
!!!flag float128_lt_quiet( float128, float128 );
|
||||
!!!flag float128_is_signaling_nan( float128 );
|
||||
|
||||
#endif
|
||||
|
2628
softfloat/timesoftfloat.c
Normal file
2628
softfloat/timesoftfloat.c
Normal file
File diff suppressed because it is too large
Load diff
151
softfloat/timesoftfloat.txt
Normal file
151
softfloat/timesoftfloat.txt
Normal file
|
@ -0,0 +1,151 @@
|
|||
|
||||
Documentation for the `timesoftfloat' Program of SoftFloat Release 2b
|
||||
|
||||
John R. Hauser
|
||||
2002 May 27
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Introduction
|
||||
|
||||
The `timesoftfloat' program evaluates the speed of SoftFloat's floating-
|
||||
point routines. Each routine can be evaluated for every relevant rounding
|
||||
mode, tininess mode, and/or rounding precision.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Contents
|
||||
|
||||
Introduction
|
||||
Contents
|
||||
Legal Notice
|
||||
Executing `timesoftfloat'
|
||||
Options
|
||||
-help
|
||||
-precision32, -precision64, -precision80
|
||||
-nearesteven, -tozero, -down, -up
|
||||
-tininessbefore, -tininessafter
|
||||
Function Sets
|
||||
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Legal Notice
|
||||
|
||||
The `timesoftfloat' program was written by John R. Hauser.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL
|
||||
LOSSES, COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO
|
||||
FURTHERMORE EFFECTIVELY INDEMNIFY THE AUTHOR, JOHN HAUSER, (possibly via
|
||||
similar legal warning) AGAINST ALL LOSSES, COSTS, OR OTHER PROBLEMS INCURRED
|
||||
BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Executing `timesoftfloat'
|
||||
|
||||
The `timesoftfloat' program is intended to be invoked from a command line
|
||||
interpreter as follows:
|
||||
|
||||
timesoftfloat [<option>...] <function>
|
||||
|
||||
Here square brackets ([]) indicate optional items, while angled brackets
|
||||
(<>) denote parameters to be filled in. The `<function>' argument is
|
||||
the name of the SoftFloat routine to evaluate, such as `float32_add' or
|
||||
`float64_to_int32'. The allowed options are detailed in the next section,
|
||||
_Options_. If `timesoftfloat' is executed without any arguments, a summary
|
||||
of usage is written. It is also possible to evaluate all machine functions
|
||||
in a single invocation as explained in the section _Function Sets_ later in
|
||||
this document.
|
||||
|
||||
Ordinarily, a function's speed will be evaulated separately for each of
|
||||
the four rounding modes, one after the other. If the rounding mode is not
|
||||
supposed to have any effect on the results of a function--for instance,
|
||||
some operations do not require rounding--only the nearest/even rounding mode
|
||||
is timed. In the same way, if a function is affected by the way in which
|
||||
underflow tininess is detected, `timesoftfloat' times the function both with
|
||||
tininess detected before rounding and after rounding. For extended double-
|
||||
precision operations affected by rounding precision control, `timesoftfloat'
|
||||
also times the function for all three rounding precision modes, one after
|
||||
the other. Evaluation of a function can be limited to a single rounding
|
||||
mode, a single tininess mode, and/or a single rounding precision with
|
||||
appropriate options (see _Options_).
|
||||
|
||||
For each function and mode evaluated, `timesoftfloat' reports the speed of
|
||||
the function in kops/s, or ``thousands of operations per second''. This
|
||||
unit of measure differs from the traditional MFLOPS (``millions of floating-
|
||||
point operations per second'') only in being a factor of 1000 smaller.
|
||||
(1000 kops/s is exactly 1 MFLOPS.) Speeds are reported in thousands
|
||||
instead of millions because software floating-point may execute at less than
|
||||
1 MFLOPS.
|
||||
|
||||
The speeds reported by `timesoftfloat' may be affected somewhat by other
|
||||
programs executing at the same time as `timesoftfloat'.
|
||||
|
||||
Note that the remainder operations (`float32_rem', `float64_rem',
|
||||
`floatx80_rem' and `float128_rem') will be markedly slower than other
|
||||
operations, particularly for extended double precision (`floatx80') and
|
||||
quadruple precision (`float128'). This is inherent to the remainder
|
||||
function itself and is not a failing of the SoftFloat implementation.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Options
|
||||
|
||||
The `timesoftfloat' program accepts several command options. If mutually
|
||||
contradictory options are given, the last one has priority.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
-help
|
||||
|
||||
The `-help' option causes a summary of program usage to be written, after
|
||||
which the program exits.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
-precision32, -precision64, -precision80
|
||||
|
||||
For extended double-precision functions affected by rounding precision
|
||||
control, the `-precision32' option restricts evaluation to only the cases
|
||||
in which rounding precision is equivalent to single precision. The other
|
||||
rounding precision options are not timed. Likewise, the `-precision64'
|
||||
and `-precision80' options fix the rounding precision equivalent to double
|
||||
precision or extended double precision, respectively. These options are
|
||||
ignored for functions not affected by rounding precision control.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
-nearesteven, -tozero, -down, -up
|
||||
|
||||
The `-nearesteven' option restricts evaluation to only the cases in which
|
||||
the rounding mode is nearest/even. The other rounding mode options are
|
||||
not timed. Likewise, `-tozero' forces rounding toward zero; `-down' forces
|
||||
rounding down; and `-up' forces rounding up. These options are ignored for
|
||||
functions that are exact and thus do not round.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
-tininessbefore, -tininessafter
|
||||
|
||||
The `-tininessbefore' option restricts evaluation to only the cases
|
||||
detecting underflow tininess before rounding. Tininess after rounding
|
||||
is not timed. Likewise, `-tininessafter' forces underflow tininess to be
|
||||
detected after rounding only. These options are ignored for functions not
|
||||
affected by the way in which underflow tininess is detected.
|
||||
|
||||
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Function Sets
|
||||
|
||||
Just as `timesoftfloat' can test an operation for all four rounding modes in
|
||||
sequence, multiple operations can also be tested with a single invocation.
|
||||
Three sets are recognized: `-all1', `-all2', and `-all'. The set `-all1'
|
||||
comprises all one-operand functions; `-all2' is all two-operand functions;
|
||||
and `-all' is all functions. A function set can be used in place of a
|
||||
function name in the command line, as in
|
||||
|
||||
timesoftfloat [<option>...] -all
|
||||
|
||||
|
Loading…
Reference in a new issue