Fixed missing references to fdlibm functions.
git-svn-id: http://picoc.googlecode.com/svn/trunk@307 21eae674-98b7-11dd-bd71-f92a316d2d60
This commit is contained in:
parent
4bc228c439
commit
c1381adae5
325
math_library.c
325
math_library.c
|
@ -153,7 +153,19 @@ T[] = {
|
||||||
7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
|
7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
|
||||||
-1.85586374855275456654e-05, /* BEF375CB, DB605373 */
|
-1.85586374855275456654e-05, /* BEF375CB, DB605373 */
|
||||||
2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
|
2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
|
||||||
};
|
},
|
||||||
|
Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
|
||||||
|
Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
|
||||||
|
Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
|
||||||
|
Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
|
||||||
|
Q5 = -2.01099218183624371326e-07, /* BE8AFDB7 6E09C32D */
|
||||||
|
Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
|
||||||
|
Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
|
||||||
|
Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
|
||||||
|
Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
|
||||||
|
Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
||||||
|
Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
||||||
|
Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
||||||
|
|
||||||
|
|
||||||
/*
|
/*
|
||||||
|
@ -1451,6 +1463,186 @@ double math_atan(double x)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* expm1(x)
|
||||||
|
* Returns exp(x)-1, the exponential of x minus 1.
|
||||||
|
*
|
||||||
|
* Method
|
||||||
|
* 1. Argument reduction:
|
||||||
|
* Given x, find r and integer k such that
|
||||||
|
*
|
||||||
|
* x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
|
||||||
|
*
|
||||||
|
* Here a correction term c will be computed to compensate
|
||||||
|
* the error in r when rounded to a floating-point number.
|
||||||
|
*
|
||||||
|
* 2. Approximating expm1(r) by a special rational function on
|
||||||
|
* the interval [0,0.34658]:
|
||||||
|
* Since
|
||||||
|
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
|
||||||
|
* we define R1(r*r) by
|
||||||
|
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
|
||||||
|
* That is,
|
||||||
|
* R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
|
||||||
|
* = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
|
||||||
|
* = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
|
||||||
|
* We use a special Remes algorithm on [0,0.347] to generate
|
||||||
|
* a polynomial of degree 5 in r*r to approximate R1. The
|
||||||
|
* maximum error of this polynomial approximation is bounded
|
||||||
|
* by 2**-61. In other words,
|
||||||
|
* R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
|
||||||
|
* where Q1 = -1.6666666666666567384E-2,
|
||||||
|
* Q2 = 3.9682539681370365873E-4,
|
||||||
|
* Q3 = -9.9206344733435987357E-6,
|
||||||
|
* Q4 = 2.5051361420808517002E-7,
|
||||||
|
* Q5 = -6.2843505682382617102E-9;
|
||||||
|
* (where z=r*r, and the values of Q1 to Q5 are listed below)
|
||||||
|
* with error bounded by
|
||||||
|
* | 5 | -61
|
||||||
|
* | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
|
||||||
|
* | |
|
||||||
|
*
|
||||||
|
* expm1(r) = exp(r)-1 is then computed by the following
|
||||||
|
* specific way which minimize the accumulation rounding error:
|
||||||
|
* 2 3
|
||||||
|
* r r [ 3 - (R1 + R1*r/2) ]
|
||||||
|
* expm1(r) = r + --- + --- * [--------------------]
|
||||||
|
* 2 2 [ 6 - r*(3 - R1*r/2) ]
|
||||||
|
*
|
||||||
|
* To compensate the error in the argument reduction, we use
|
||||||
|
* expm1(r+c) = expm1(r) + c + expm1(r)*c
|
||||||
|
* ~ expm1(r) + c + r*c
|
||||||
|
* Thus c+r*c will be added in as the correction terms for
|
||||||
|
* expm1(r+c). Now rearrange the term to avoid optimization
|
||||||
|
* screw up:
|
||||||
|
* ( 2 2 )
|
||||||
|
* ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
|
||||||
|
* expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
|
||||||
|
* ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
|
||||||
|
* ( )
|
||||||
|
*
|
||||||
|
* = r - E
|
||||||
|
* 3. Scale back to obtain expm1(x):
|
||||||
|
* From step 1, we have
|
||||||
|
* expm1(x) = either 2^k*[expm1(r)+1] - 1
|
||||||
|
* = or 2^k*[expm1(r) + (1-2^-k)]
|
||||||
|
* 4. Implementation notes:
|
||||||
|
* (A). To save one multiplication, we scale the coefficient Qi
|
||||||
|
* to Qi*2^i, and replace z by (x^2)/2.
|
||||||
|
* (B). To achieve maximum accuracy, we compute expm1(x) by
|
||||||
|
* (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
|
||||||
|
* (ii) if k=0, return r-E
|
||||||
|
* (iii) if k=-1, return 0.5*(r-E)-0.5
|
||||||
|
* (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
|
||||||
|
* else return 1.0+2.0*(r-E);
|
||||||
|
* (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
|
||||||
|
* (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
|
||||||
|
* (vii) return 2^k(1-((E+2^-k)-r))
|
||||||
|
*
|
||||||
|
* Special cases:
|
||||||
|
* expm1(INF) is INF, expm1(NaN) is NaN;
|
||||||
|
* expm1(-INF) is -1, and
|
||||||
|
* for finite argument, only expm1(0)=0 is exact.
|
||||||
|
*
|
||||||
|
* Accuracy:
|
||||||
|
* according to an error analysis, the error is always less than
|
||||||
|
* 1 ulp (unit in the last place).
|
||||||
|
*
|
||||||
|
* Misc. info.
|
||||||
|
* For IEEE double
|
||||||
|
* if x > 7.09782712893383973096e+02 then expm1(x) overflow
|
||||||
|
*
|
||||||
|
* Constants:
|
||||||
|
* The hexadecimal values are the intended ones for the following
|
||||||
|
* constants. The decimal values may be used, provided that the
|
||||||
|
* compiler will convert from decimal to binary accurately enough
|
||||||
|
* to produce the hexadecimal values shown.
|
||||||
|
*/
|
||||||
|
|
||||||
|
double math_expm1(double x)
|
||||||
|
{
|
||||||
|
double y,hi,lo,c,t,e,hxs,hfx,r1;
|
||||||
|
int k,xsb;
|
||||||
|
unsigned hx;
|
||||||
|
|
||||||
|
hx = __HI(x); /* high word of x */
|
||||||
|
xsb = hx&0x80000000; /* sign bit of x */
|
||||||
|
if(xsb==0) y=x; else y= -x; /* y = |x| */
|
||||||
|
hx &= 0x7fffffff; /* high word of |x| */
|
||||||
|
|
||||||
|
/* filter out huge and non-finite argument */
|
||||||
|
if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
|
||||||
|
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
|
||||||
|
if(hx>=0x7ff00000) {
|
||||||
|
if(((hx&0xfffff)|__LO(x))!=0)
|
||||||
|
return x+x; /* NaN */
|
||||||
|
else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
|
||||||
|
}
|
||||||
|
if(x > o_threshold) return huge*huge; /* overflow */
|
||||||
|
}
|
||||||
|
if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
|
||||||
|
if(x+tiny<0.0) /* raise inexact */
|
||||||
|
return tiny-one; /* return -1 */
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* argument reduction */
|
||||||
|
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
||||||
|
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
||||||
|
if(xsb==0)
|
||||||
|
{hi = x - ln2_hi; lo = ln2_lo; k = 1;}
|
||||||
|
else
|
||||||
|
{hi = x + ln2_hi; lo = -ln2_lo; k = -1;}
|
||||||
|
} else {
|
||||||
|
k = invln2*x+((xsb==0)?0.5:-0.5);
|
||||||
|
t = k;
|
||||||
|
hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
|
||||||
|
lo = t*ln2_lo;
|
||||||
|
}
|
||||||
|
x = hi - lo;
|
||||||
|
c = (hi-x)-lo;
|
||||||
|
}
|
||||||
|
else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
|
||||||
|
t = huge+x; /* return x with inexact flags when x!=0 */
|
||||||
|
return x - (t-(huge+x));
|
||||||
|
}
|
||||||
|
else k = 0;
|
||||||
|
|
||||||
|
/* x is now in primary range */
|
||||||
|
hfx = 0.5*x;
|
||||||
|
hxs = x*hfx;
|
||||||
|
r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
|
||||||
|
t = 3.0-r1*hfx;
|
||||||
|
e = hxs*((r1-t)/(6.0 - x*t));
|
||||||
|
if(k==0) return x - (x*e-hxs); /* c is 0 */
|
||||||
|
else {
|
||||||
|
e = (x*(e-c)-c);
|
||||||
|
e -= hxs;
|
||||||
|
if(k== -1) return 0.5*(x-e)-0.5;
|
||||||
|
if(k==1) {
|
||||||
|
if(x < -0.25) return -2.0*(e-(x+0.5));
|
||||||
|
else return one+2.0*(x-e);
|
||||||
|
}
|
||||||
|
if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
|
||||||
|
y = one-(e-x);
|
||||||
|
__HI(y) += (k<<20); /* add k to y's exponent */
|
||||||
|
return y-one;
|
||||||
|
}
|
||||||
|
t = one;
|
||||||
|
if(k<20) {
|
||||||
|
__HI(t) = 0x3ff00000 - (0x200000>>k); /* t=1-2^-k */
|
||||||
|
y = t-(e-x);
|
||||||
|
__HI(y) += (k<<20); /* add k to y's exponent */
|
||||||
|
} else {
|
||||||
|
__HI(t) = ((0x3ff-k)<<20); /* 2^-k */
|
||||||
|
y = x-(e+t);
|
||||||
|
y += one;
|
||||||
|
__HI(y) += (k<<20); /* add k to y's exponent */
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return y;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
/* __ieee754_sinh(x)
|
/* __ieee754_sinh(x)
|
||||||
* Method :
|
* Method :
|
||||||
* mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
|
* mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
|
||||||
|
@ -1672,6 +1864,137 @@ double math_tanh(double x)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* double log1p(double x)
|
||||||
|
*
|
||||||
|
* Method :
|
||||||
|
* 1. Argument Reduction: find k and f such that
|
||||||
|
* 1+x = 2^k * (1+f),
|
||||||
|
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
||||||
|
*
|
||||||
|
* Note. If k=0, then f=x is exact. However, if k!=0, then f
|
||||||
|
* may not be representable exactly. In that case, a correction
|
||||||
|
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
|
||||||
|
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
|
||||||
|
* and add back the correction term c/u.
|
||||||
|
* (Note: when x > 2**53, one can simply return log(x))
|
||||||
|
*
|
||||||
|
* 2. Approximation of log1p(f).
|
||||||
|
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
||||||
|
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
||||||
|
* = 2s + s*R
|
||||||
|
* We use a special Reme algorithm on [0,0.1716] to generate
|
||||||
|
* a polynomial of degree 14 to approximate R The maximum error
|
||||||
|
* of this polynomial approximation is bounded by 2**-58.45. In
|
||||||
|
* other words,
|
||||||
|
* 2 4 6 8 10 12 14
|
||||||
|
* R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
|
||||||
|
* (the values of Lp1 to Lp7 are listed in the program)
|
||||||
|
* and
|
||||||
|
* | 2 14 | -58.45
|
||||||
|
* | Lp1*s +...+Lp7*s - R(z) | <= 2
|
||||||
|
* | |
|
||||||
|
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
||||||
|
* In order to guarantee error in log below 1ulp, we compute log
|
||||||
|
* by
|
||||||
|
* log1p(f) = f - (hfsq - s*(hfsq+R)).
|
||||||
|
*
|
||||||
|
* 3. Finally, log1p(x) = k*ln2 + log1p(f).
|
||||||
|
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
||||||
|
* Here ln2 is split into two floating point number:
|
||||||
|
* ln2_hi + ln2_lo,
|
||||||
|
* where n*ln2_hi is always exact for |n| < 2000.
|
||||||
|
*
|
||||||
|
* Special cases:
|
||||||
|
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
|
||||||
|
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
|
||||||
|
* log1p(NaN) is that NaN with no signal.
|
||||||
|
*
|
||||||
|
* Accuracy:
|
||||||
|
* according to an error analysis, the error is always less than
|
||||||
|
* 1 ulp (unit in the last place).
|
||||||
|
*
|
||||||
|
* Constants:
|
||||||
|
* The hexadecimal values are the intended ones for the following
|
||||||
|
* constants. The decimal values may be used, provided that the
|
||||||
|
* compiler will convert from decimal to binary accurately enough
|
||||||
|
* to produce the hexadecimal values shown.
|
||||||
|
*
|
||||||
|
* Note: Assuming log() return accurate answer, the following
|
||||||
|
* algorithm can be used to compute log1p(x) to within a few ULP:
|
||||||
|
*
|
||||||
|
* u = 1+x;
|
||||||
|
* if(u==1.0) return x ; else
|
||||||
|
* return log(u)*(x/(u-1.0));
|
||||||
|
*
|
||||||
|
* See HP-15C Advanced Functions Handbook, p.193.
|
||||||
|
*/
|
||||||
|
|
||||||
|
double math_log1p(double x)
|
||||||
|
{
|
||||||
|
double hfsq,f,c,s,z,R,u;
|
||||||
|
int k,hx,hu,ax;
|
||||||
|
|
||||||
|
hx = __HI(x); /* high word of x */
|
||||||
|
ax = hx&0x7fffffff;
|
||||||
|
|
||||||
|
k = 1;
|
||||||
|
if (hx < 0x3FDA827A) { /* x < 0.41422 */
|
||||||
|
if(ax>=0x3ff00000) { /* x <= -1.0 */
|
||||||
|
if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
|
||||||
|
else return (x-x)/(x-x); /* log1p(x<-1)=NaN */
|
||||||
|
}
|
||||||
|
if(ax<0x3e200000) { /* |x| < 2**-29 */
|
||||||
|
if(two54+x>zero /* raise inexact */
|
||||||
|
&&ax<0x3c900000) /* |x| < 2**-54 */
|
||||||
|
return x;
|
||||||
|
else
|
||||||
|
return x - x*x*0.5;
|
||||||
|
}
|
||||||
|
if(hx>0||hx<=((int)0xbfd2bec3)) {
|
||||||
|
k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */
|
||||||
|
}
|
||||||
|
if (hx >= 0x7ff00000) return x+x;
|
||||||
|
if(k!=0) {
|
||||||
|
if(hx<0x43400000) {
|
||||||
|
u = 1.0+x;
|
||||||
|
hu = __HI(u); /* high word of u */
|
||||||
|
k = (hu>>20)-1023;
|
||||||
|
c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
|
||||||
|
c /= u;
|
||||||
|
} else {
|
||||||
|
u = x;
|
||||||
|
hu = __HI(u); /* high word of u */
|
||||||
|
k = (hu>>20)-1023;
|
||||||
|
c = 0;
|
||||||
|
}
|
||||||
|
hu &= 0x000fffff;
|
||||||
|
if(hu<0x6a09e) {
|
||||||
|
__HI(u) = hu|0x3ff00000; /* normalize u */
|
||||||
|
} else {
|
||||||
|
k += 1;
|
||||||
|
__HI(u) = hu|0x3fe00000; /* normalize u/2 */
|
||||||
|
hu = (0x00100000-hu)>>2;
|
||||||
|
}
|
||||||
|
f = u-1.0;
|
||||||
|
}
|
||||||
|
hfsq=0.5*f*f;
|
||||||
|
if(hu==0) { /* |f| < 2**-20 */
|
||||||
|
if(f==zero) {
|
||||||
|
if(k==0) return zero;
|
||||||
|
else {c += k*ln2_lo; return k*ln2_hi+c;}
|
||||||
|
}
|
||||||
|
R = hfsq*(1.0-0.66666666666666666*f);
|
||||||
|
if(k==0) return f-R; else
|
||||||
|
return k*ln2_hi-((R-(k*ln2_lo+c))-f);
|
||||||
|
}
|
||||||
|
s = f/(2.0+f);
|
||||||
|
z = s*s;
|
||||||
|
R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
|
||||||
|
if(k==0) return f-(hfsq-s*(hfsq+R)); else
|
||||||
|
return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
/* asinh(x)
|
/* asinh(x)
|
||||||
* Method :
|
* Method :
|
||||||
* Based on
|
* Based on
|
||||||
|
|
Loading…
Reference in a new issue