picoc/platform/library_surveyor.c

945 lines
33 KiB
C
Raw Normal View History

#include "../interpreter.h"
static int Blobcnt, Blobx1, Blobx2, Bloby1, Bloby2, Iy1, Iy2, Iu1, Iu2, Iv1, Iv2;
static int Cxmin, Cxmax, Cymin, Cymax;
static int GPSlat, GPSlon, GPSalt, GPSfix, GPSsat, GPSutc, Elcount, Ercount;
static int ScanVect[16], NNVect[NUM_OUTPUT];
void PlatformLibraryInit()
{
struct ValueType *IntArrayType;
IntArrayType = TypeGetMatching(NULL, &IntType, TypeArray, 16, StrEmpty, TRUE);
VariableDefinePlatformVar(NULL, "scanvect", IntArrayType, (union AnyValue *)&ScanVect, FALSE);
VariableDefinePlatformVar(NULL, "neuron", IntArrayType, (union AnyValue *)&NNVect, FALSE);
VariableDefinePlatformVar(NULL, "xbuf", CharArrayType, (union AnyValue *)&xbuff, FALSE);
VariableDefinePlatformVar(NULL, "blobcnt", &IntType, (union AnyValue *)&Blobcnt, FALSE);
VariableDefinePlatformVar(NULL, "blobx1", &IntType, (union AnyValue *)&Blobx1, FALSE);
VariableDefinePlatformVar(NULL, "blobx2", &IntType, (union AnyValue *)&Blobx2, FALSE);
VariableDefinePlatformVar(NULL, "bloby1", &IntType, (union AnyValue *)&Bloby1, FALSE);
VariableDefinePlatformVar(NULL, "bloby2", &IntType, (union AnyValue *)&Bloby2, FALSE);
VariableDefinePlatformVar(NULL, "lcount", &IntType, (union AnyValue *)&Elcount, FALSE);
VariableDefinePlatformVar(NULL, "rcount", &IntType, (union AnyValue *)&Ercount, FALSE);
VariableDefinePlatformVar(NULL, "y1", &IntType, (union AnyValue *)&Iy1, FALSE);
VariableDefinePlatformVar(NULL, "y2", &IntType, (union AnyValue *)&Iy2, FALSE);
VariableDefinePlatformVar(NULL, "u1", &IntType, (union AnyValue *)&Iu1, FALSE);
VariableDefinePlatformVar(NULL, "u2", &IntType, (union AnyValue *)&Iu2, FALSE);
VariableDefinePlatformVar(NULL, "v1", &IntType, (union AnyValue *)&Iv1, FALSE);
VariableDefinePlatformVar(NULL, "v2", &IntType, (union AnyValue *)&Iv2, FALSE);
VariableDefinePlatformVar(NULL, "gpslat", &IntType, (union AnyValue *)&GPSlat, FALSE);
VariableDefinePlatformVar(NULL, "gpslon", &IntType, (union AnyValue *)&GPSlon, FALSE);
VariableDefinePlatformVar(NULL, "gpsalt", &IntType, (union AnyValue *)&GPSalt, FALSE);
VariableDefinePlatformVar(NULL, "gpsfix", &IntType, (union AnyValue *)&GPSfix, FALSE);
VariableDefinePlatformVar(NULL, "gpssat", &IntType, (union AnyValue *)&GPSsat, FALSE);
VariableDefinePlatformVar(NULL, "gpsutc", &IntType, (union AnyValue *)&GPSutc, FALSE);
VariableDefinePlatformVar(NULL, "cxmin", &IntType, (union AnyValue *)&Cxmin, FALSE);
VariableDefinePlatformVar(NULL, "cxmax", &IntType, (union AnyValue *)&Cxmax, FALSE);
VariableDefinePlatformVar(NULL, "cymin", &IntType, (union AnyValue *)&Cymin, FALSE);
VariableDefinePlatformVar(NULL, "cymax", &IntType, (union AnyValue *)&Cymax, FALSE);
LibraryAdd(&GlobalTable, "platform library", &PlatformLibrary[0]);
}
void Csignal(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // check for kbhit, return t or nil
{
ReturnValue->Val->Integer = getsignal();
}
void Csignal1(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // check for kbhit, return t or nil
{
ReturnValue->Val->Integer = uart1Signal();
}
void Cinput(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // return 0-9 from console input
{
ReturnValue->Val->Integer = getch();
}
void Cinput1(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // return 0-9 from console input
{
ReturnValue->Val->Integer = uart1GetCh();
}
void Cread_int(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // return 0-9 from console input
{
int ix, sign;
unsigned char ch;
ix = 0;
sign = 1;
while (1) {
ch = getch();
if (ch == '-') {
sign = -1;
continue;
}
if ((ch < '0') || (ch > '9')) { // if not '-' or 0-9, we're done
ReturnValue->Val->Integer = ix * sign;
return;
}
ix = (ix * 10) + (ch & 0x0F);
}
}
void Cread_str(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // read string from console
{
int ix;
unsigned char ch;
ix = 0;
char *cp = (char *)Param[0]->Val->Pointer;
while (1) {
ch = getch();
cp[ix++] = ch;
if ((ch == 0) || (ch == 0x01)) { // null or ctrl-A
ix--;
cp[ix] = 0;
break;
}
if (ix > 1023) {
cp[ix] = 0;
ix--;
break;
}
}
ReturnValue->Val->Integer = ix;
}
void Cinit_uart1(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // return 0-9 from console input
{
int ii;
ii = Param[0]->Val->Integer; // ii = baudrate for uart1
init_uart1(ii);
}
void Coutput(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // return 0-9 from console input
{
int ch;
ch = Param[0]->Val->Integer;
putchar((unsigned char)ch);
}
void Coutput1(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // return 0-9 from console input
{
int ch;
ch = Param[0]->Val->Integer;
uart1SendChar((unsigned char)ch);
}
void Cdelay(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
int del;
del = Param[0]->Val->Integer;
if ((del < 0) || (del > 1000000))
return;
delayMS(del);
}
void Crand(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
ReturnValue->Val->Integer = (int)rand() % (unsigned int)(Param[0]->Val->Integer + 1);
}
void Ctime(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
ReturnValue->Val->Integer = (int)readRTC();
}
void Ciodir(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
int dir;
dir = Param[0]->Val->Integer;
*pPORTHIO_DIR = ((dir << 10) & 0xFC00) + (*pPORTHIO_DIR & 0x03FF); // H15/14/13/12/11/10 - 1=output, 0=input
*pPORTHIO_INEN = (((~dir) << 10) & 0xFC00) + (*pPORTHIO_INEN & 0x03FF); // invert dir bits to enable inputs
}
void Cioread(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
ReturnValue->Val->Integer = (*pPORTHIO >> 10) & 0x003F;
}
void Ciowrite(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
*pPORTHIO = ((Param[0]->Val->Integer << 10) & 0xFC00) + (*pPORTHIO & 0x03FF);
}
void Cpeek(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
int size, ptr;
unsigned char *cp;
unsigned short *sp;
unsigned int *ip;
/* x = peek(addr, size);
mask ptr to align with word size */
ptr = Param[0]->Val->Integer;
size = Param[1]->Val->Integer;
switch (size) {
case 1: // char *
cp = (unsigned char *)ptr;
ReturnValue->Val->Integer = (int)((unsigned int)*cp);
break;
case 2: // short *
sp = (unsigned short *)(ptr & 0xFFFFFFFE); // align with even boundary
ReturnValue->Val->Integer = (int)((unsigned short)*sp);
break;
case 4: // int *
ip = (unsigned int *)(ptr & 0xFFFFFFFC); // aling with quad boundary
ReturnValue->Val->Integer = (int)*ip;
break;
default:
ReturnValue->Val->Integer = 0;
break;
}
}
void Cpoke(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
int size, ptr, val;
unsigned char *cp;
unsigned short *sp;
unsigned int *ip;
/* x = poke(addr, size, val);
mask ptr to align with word size */
ptr = Param[0]->Val->Integer;
size = Param[1]->Val->Integer;
val = Param[2]->Val->Integer;
switch (size) {
case 1: // char *
cp = (unsigned char *)ptr;
*cp = (unsigned char)(val & 0x000000FF);
break;
case 2: // short *
sp = (unsigned short *)(ptr & 0xFFFFFFFE);
*sp = (unsigned short)(val & 0x0000FFFF);
break;
case 4: // int *
ip = (unsigned int *)(ptr & 0xFFFFFFFC);
*ip = val;
break;
default: // don't bother with bad value
break;
}
}
void Cencoders(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
unsigned int ix;
ix = encoders(); // read left and right encoders; save data to C globals lcount, rcount
Elcount = (ix >> 16) & 0x0000FFFF;
Ercount = ix & 0x0000FFFF;
}
void Cencoderx(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // return reading from HMC6352 I2C compass
{
int ix;
ix = (unsigned char)Param[0]->Val->Integer;
if ((ix<0) || (ix>7))
ProgramFail(NULL, "encoderx(): invalid channel");
ReturnValue->Val->Integer = encoder_4wd(ix);
}
void Cmotors(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
lspeed = Param[0]->Val->Integer;
if ((lspeed < -100) || (lspeed > 100))
ProgramFail(NULL, "motors(): left motor value out of range");
rspeed = Param[1]->Val->Integer;
if ((rspeed < -100) || (rspeed > 100))
ProgramFail(NULL, "motors(): right motor value out of range");
if (!pwm1_init) {
initPWM();
pwm1_init = 1;
pwm1_mode = PWM_PWM;
base_speed = 50;
}
setPWM(lspeed, rspeed);
}
void Cmotors2(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
lspeed2 = Param[0]->Val->Integer;
if ((lspeed2 < -100) || (lspeed2 > 100))
ProgramFail(NULL, "motors2(): left motor value out of range");
rspeed2 = Param[1]->Val->Integer;
if ((rspeed2 < -100) || (rspeed2 > 100))
ProgramFail(NULL, "motors2(): right motor value out of range");
if (!pwm2_init) {
initPWM2();
pwm2_init = 1;
pwm2_mode = PWM_PWM;
base_speed2 = 50;
}
setPWM2(lspeed2, rspeed2);
}
/* motor control for SRV-4WD controller */
void Cmotorx(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
unsigned char ch;
int ls, rs;
ls = Param[0]->Val->Integer;
if ((ls < -100) || (ls > 100))
ProgramFail(NULL, "motors(): left motor value out of range");
ls = (ls * 127) / 100; // scale to full +/-127 range
rs = Param[1]->Val->Integer;
if ((rs < -100) || (rs > 100))
ProgramFail(NULL, "motors(): right motor value out of range");
rs = (rs * 127) / 100; // scale to full +/-127 range
if (xwd_init == 0) {
xwd_init = 1;
init_uart1(115200);
delayMS(10);
}
uart1SendChar('x');
uart1SendChar((char)ls);
uart1SendChar((char)rs);
while (uart1GetChar(&ch)) // flush the receive buffer
continue;
}
void Cservos(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
int lspeed, rspeed;
lspeed = Param[0]->Val->Integer;
if ((lspeed < 0) || (lspeed > 100))
ProgramFail(NULL, "servos(): TMR2 value out of range");
rspeed = Param[1]->Val->Integer;
if ((rspeed < 0) || (rspeed > 100))
ProgramFail(NULL, "servos()(): TMR3 value out of range");
if (!pwm1_init) {
initPPM1();
pwm1_init = 1;
pwm1_mode = PWM_PPM;
}
setPPM1(lspeed, rspeed);
}
void Cservos2(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
int lspeed, rspeed;
lspeed = Param[0]->Val->Integer;
if ((lspeed < 0) || (lspeed > 100))
ProgramFail(NULL, "servos2(): TMR6 value out of range");
rspeed = Param[1]->Val->Integer;
if ((rspeed < 0) || (rspeed > 100))
ProgramFail(NULL, "servos2(): TMR7 value out of range");
if (!pwm2_init) {
initPPM2();
pwm2_init = 1;
pwm2_mode = PWM_PPM;
}
setPPM2(lspeed, rspeed);
}
void Claser(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // laser(1) turns them on, laser(0) turns them off
{
*pPORTHIO &= 0xFD7F; // turn off both lasers
switch (Param[0]->Val->Integer) {
case 1:
*pPORTHIO |= 0x0080; // turn on left laser
break;
case 2:
*pPORTHIO |= 0x0200; // turn on right laser
break;
case 3:
*pPORTHIO |= 0x0280; // turn on both lasers
break;
}
}
void Csonar(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // read sonar module
{
unsigned int i;
i = Param[0]->Val->Integer;
if ((i<1) || (i>4)) {
ProgramFail(NULL, "sonar(): 1, 2, 3, 4 are only valid selections");
}
sonar();
ReturnValue->Val->Integer = sonar_data[i] / 100;
}
void Crange(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
ReturnValue->Val->Integer = laser_range(0);
}
void Cbattery(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
if (*pPORTHIO & 0x0004)
ReturnValue->Val->Integer = 0; // low battery voltage detected
else
ReturnValue->Val->Integer = 1; // battery voltage okay
}
void Cvcolor(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // set color bin -
// vcolor (color, ymin, ymax, umin, umax, vmin, vmax);
{
int ix;
ix = Param[0]->Val->Integer;
ymin[ix] = Param[1]->Val->Integer;
ymax[ix] = Param[2]->Val->Integer;
umin[ix] = Param[3]->Val->Integer;
umax[ix] = Param[4]->Val->Integer;
vmin[ix] = Param[5]->Val->Integer;
vmax[ix] = Param[6]->Val->Integer;
}
void Cvcam(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // set camera functions -
// enable/disable AGC(4) / AWB(2) / AEC(1) camera controls
// vcam(7) = AGC+AWB+AEC on vcam(0) = AGC+AWB+AEC off
{
unsigned char cx, i2c_data[2];
cx = (unsigned char)Param[0]->Val->Integer & 0x07;
i2c_data[0] = 0x13;
i2c_data[1] = 0xC0 + cx;
i2cwrite(0x30, (unsigned char *)i2c_data, 1, SCCB_ON); // OV9655
i2cwrite(0x21, (unsigned char *)i2c_data, 1, SCCB_ON); // OV7725
}
void Cvfind(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // set color bin -
// vfind (color, x1, x2, y1, y2);
{
int ix, x1, x2, y1, y2;
ix = Param[0]->Val->Integer;
x1 = Param[1]->Val->Integer;
x2 = Param[2]->Val->Integer;
y1 = Param[3]->Val->Integer;
y2 = Param[4]->Val->Integer;
ReturnValue->Val->Integer = vfind((unsigned char *)FRAME_BUF, ix, x1, x2, y1, y2);
}
void Cvcap(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
grab_frame(); // capture frame for processing
}
void Cvrcap(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
grab_reference_frame(); // capture reference frame for differencing
}
void Cvdiff(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
frame_diff_flag = Param[0]->Val->Integer; // set/clear frame_diff_flag
}
void Cvpix(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
int x, y, ix;
x = Param[0]->Val->Integer;
y = Param[1]->Val->Integer;
ix = vpix((unsigned char *)FRAME_BUF, x, y);
Iy1 = ((ix>>16) & 0x000000FF); // Y1
Iu1 = ((ix>>24) & 0x000000FF); // U
Iv1 = ((ix>>8) & 0x000000FF); // V
}
void Cvscan(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
int col, thresh, ix;
col = Param[0]->Val->Integer;
if ((col < 1) || (col > 9))
ProgramFail(NULL, "vscan(): number of columns must be between 1 and 9");
thresh = Param[1]->Val->Integer;
if ((thresh < 0) || (thresh > 9999))
ProgramFail(NULL, "vscan(): threshold must be between 0 and 9999");
ix = vscan((unsigned char *)SPI_BUFFER1, (unsigned char *)FRAME_BUF, thresh, (unsigned int)col, (unsigned int *)&ScanVect[0]);
ReturnValue->Val->Integer = ix;
}
void Cvmean(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
vmean((unsigned char *)FRAME_BUF);
Iy1 = mean[0];
Iu1 = mean[1];
Iv1 = mean[2];
}
// search for blob by color, index; return center point X,Y and width Z
void Cvblob(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) {
int ix, iblob, numblob;
ix = Param[0]->Val->Integer;
if (ix > MAX_COLORS)
ProgramFail(NULL, "blob(): invalid color index");
iblob = Param[1]->Val->Integer;
if (iblob > MAX_BLOBS)
ProgramFail(NULL, "blob(): invalid blob index");
numblob = vblob((unsigned char *)FRAME_BUF, (unsigned char *)FRAME_BUF3, ix);
if ((blobcnt[iblob] == 0) || (numblob == -1)) {
Blobcnt = 0;
} else {
Blobcnt = blobcnt[iblob];
Blobx1 = blobx1[iblob];
Blobx2 = blobx2[iblob];
Bloby1 = bloby1[iblob];
Bloby2 = bloby2[iblob];
}
ReturnValue->Val->Integer = numblob;
}
void Cvjpeg (struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) {
unsigned int image_size, qual;
unsigned char *output_start, *output_end;
qual = Param[0]->Val->Integer;
if ((qual < 1) || (qual > 8))
ProgramFail(NULL, "vjpeg(): quality parameter out of range");
output_start = (unsigned char *)JPEG_BUF;
output_end = encode_image((unsigned char *)FRAME_BUF, output_start, qual,
FOUR_TWO_TWO, imgWidth, imgHeight);
image_size = (unsigned int)(output_end - output_start);
ReturnValue->Val->Integer = image_size;
}
void Cvsend (struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) {
unsigned int ix, image_size;
unsigned char *cp;
image_size = Param[0]->Val->Integer;
if ((image_size < 0) || (image_size > 200000))
ProgramFail(NULL, "vsend(): image size out of range");
led1_on();
cp = (unsigned char *)JPEG_BUF;
for (ix=0; ix<image_size; ix++)
putchar(*cp++);
led0_on();
}
void Ccompass(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // return reading from HMC6352 I2C compass
{
unsigned char i2c_data[2];
unsigned int ix;
i2c_data[0] = 0x41; // read compass twice to clear last reading
i2cread(0x22, (unsigned char *)i2c_data, 2, SCCB_ON);
delayMS(20);
i2c_data[0] = 0x41;
i2cread(0x22, (unsigned char *)i2c_data, 2, SCCB_ON);
ix = ((unsigned int)(i2c_data[0] << 8) + i2c_data[1]) / 10;
ReturnValue->Val->Integer = ix;
}
void Ccompassx(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // return reading from HMC5843 I2C compass
{
short x, y, z;
int ix;
ix = (int)read_compass3x(&x, &y, &z);
Cxmin = cxmin;
Cxmax = cxmax;
Cymin = cymin;
Cymax = cymax;
ReturnValue->Val->Integer = ix;
}
void Ccompassxcal(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // return reading from HMC5843 I2C compass
{
/* cxmin, cxmax, cymin, cymax */
cxmin = Param[0]->Val->Integer;
cxmax = Param[1]->Val->Integer;
cymin = Param[2]->Val->Integer;
cymax = Param[3]->Val->Integer;
compass_continuous_calibration = Param[4]->Val->Integer; // continuous calibration: off = 0, on = 1
}
void Ctilt(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // return reading from HMC6352 I2C compass
{
unsigned int ix;
ix = (unsigned int)Param[0]->Val->Integer;
if ((ix<1) || (ix>3))
ProgramFail(NULL, "tilt(): invalid channel");
ReturnValue->Val->Integer = tilt(ix);
}
void Canalog(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // return reading from HMC6352 I2C compass
{
unsigned int ix, channel;
ix = (unsigned char)Param[0]->Val->Integer;
if ((ix<1) || (ix>28))
ProgramFail(NULL, "analog(): invalid channel");
channel = ix % 10;
if ((channel<1) || (channel>8))
ProgramFail(NULL, "analog(): invalid channel");
ReturnValue->Val->Integer = analog(ix);
}
/* read analog channel 0-7 from SRV-4WD (
channel 0 = battery level
channel 1 = 5V gyro
channel 2 = 3.3V gyro
channel 3 = IR1
channel 4 = IR2
channel 6 = IR3
channel 7 = IR4
*/
void Canalogx(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // return reading from HMC6352 I2C compass
{
int ix;
ix = (unsigned char)Param[0]->Val->Integer;
if ((ix<0) || (ix>7))
ProgramFail(NULL, "analogx(): invalid channel");
ReturnValue->Val->Integer = analog_4wd(ix);
}
void Cgps(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
gps_parse();
GPSlat = gps_gga.lat;
GPSlon = gps_gga.lon;
GPSalt = gps_gga.alt;
GPSfix = gps_gga.fix;
GPSsat = gps_gga.sat;
GPSutc = gps_gga.utc;
}
void Creadi2c(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // syntax val = readi2c(device, register);
{
unsigned char i2c_device, i2c_data[2];
i2c_device = (unsigned char)Param[0]->Val->Integer;
i2c_data[0] = (unsigned char)Param[1]->Val->Integer;
i2cread(i2c_device, (unsigned char *)i2c_data, 1, SCCB_OFF);
ReturnValue->Val->Integer = ((int)i2c_data[0] & 0x000000FF);
}
void Creadi2c2(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // syntax two_byte_val = readi2c(device, register);
{
unsigned char i2c_device, i2c_data[2];
i2c_device = (unsigned char)Param[0]->Val->Integer;
i2c_data[0] = (unsigned char)Param[1]->Val->Integer;
i2cread(i2c_device, (unsigned char *)i2c_data, 2, SCCB_OFF);
ReturnValue->Val->Integer = (((unsigned int)i2c_data[0] << 8) + i2c_data[1]);
}
void Cwritei2c(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // syntax writei2c(device, register, value);
{
unsigned char i2c_device, i2c_data[2];
i2c_device = (unsigned char)Param[0]->Val->Integer;
i2c_data[0] = (unsigned char)Param[1]->Val->Integer;
i2c_data[1] = (unsigned char)Param[2]->Val->Integer;
i2cwrite(i2c_device, (unsigned char *)i2c_data, 1, SCCB_OFF);
}
void Cabs(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // abs(int)
{
int ix;
ix = Param[0]->Val->Integer; // return absolute value of int
if (ix < 0)
ix = -ix;
ReturnValue->Val->Integer = ix;
}
void Csin(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // sin(angle)
{
int ix;
ix = Param[0]->Val->Integer; // input to function is angle in degrees
ReturnValue->Val->Integer = sin(ix);
}
void Ccos(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // cos(angle)
{
int ix;
ix = Param[0]->Val->Integer; // input to function is angle in degrees
ReturnValue->Val->Integer = cos(ix);
}
void Ctan(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // tan(angle)
{
int ix;
ix = Param[0]->Val->Integer; // input to function is angle in degrees
ReturnValue->Val->Integer = tan(ix);
}
void Casin(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // asin(y,hyp)
{
int y, hyp;
y = Param[0]->Val->Integer;
hyp = Param[1]->Val->Integer;
if (y > hyp)
ProgramFail(NULL, "asin(): opposite greater than hypotenuse");
ReturnValue->Val->Integer = asin(y, hyp);
}
void Cacos(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // acos(x,hyp)
{
int x, hyp;
x = Param[0]->Val->Integer;
hyp = Param[1]->Val->Integer;
if (x > hyp)
ProgramFail(NULL, "acos(): adjacent greater than hypotenuse");
ReturnValue->Val->Integer = acos(x, hyp);
}
void Catan(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // atan(y,x)
{
int x ,y;
y = Param[0]->Val->Integer;
x = Param[1]->Val->Integer;
ReturnValue->Val->Integer = atan(y, x);
}
void Cgps_head(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // gps_head(lat1, lon1, lat2, lon2)
{
int lat1, lon1, lat2, lon2;
lat1 = Param[0]->Val->Integer;
lon1 = Param[1]->Val->Integer;
lat2 = Param[2]->Val->Integer;
lon2 = Param[3]->Val->Integer;
ReturnValue->Val->Integer = gps_head(lat1, lon1, lat2, lon2);
}
void Cgps_dist(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // gps_dist(lat1, lon1, lat2, lon2)
{
int lat1, lon1, lat2, lon2;
lat1 = Param[0]->Val->Integer;
lon1 = Param[1]->Val->Integer;
lat2 = Param[2]->Val->Integer;
lon2 = Param[3]->Val->Integer;
ReturnValue->Val->Integer = gps_dist(lat1, lon1, lat2, lon2);
}
void Csqrt(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) // sqrt(x)
{
int x;
x = Param[0]->Val->Integer;
ReturnValue->Val->Integer = isqrt(x);
}
void Cnnset(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) {
int ix, i1;
ix = Param[0]->Val->Integer;
if (ix > NUM_NPATTERNS)
ProgramFail(NULL, "nnset(): invalid index");
for (i1=0; i1<8; i1++)
npattern[ix*8 + i1] = (unsigned char)Param[i1+1]->Val->Integer;
}
void Cnnshow(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) {
int ix;
ix = Param[0]->Val->Integer;
if (ix > NUM_NPATTERNS)
ProgramFail(NULL, "nnshow(): invalid index");
nndisplay(ix);
}
void Cnninit(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) {
nninit_network();
}
void Cnntrain(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) {
int ix, i1;
nntrain_network(10000);
for (ix=0; ix<NUM_NPATTERNS; ix++) {
nnset_pattern(ix);
nncalculate_network();
for (i1=0; i1<NUM_OUTPUT; i1++)
printf(" %3d", N_OUT(i1)/10);
printf("\r\n");
}
}
void Cnntest(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) {
int ix, i1, i2, max;
unsigned char ch;
ix = 0;
for (i1=0; i1<8; i1++) {
ch = (unsigned char)Param[i1]->Val->Integer;
for (i2=0; i2<8; i2++) {
if (ch & nmask[i2])
N_IN(ix++) = 1024;
else
N_IN(ix++) = 0;
}
}
nncalculate_network();
ix = 0;
max = 0;
for (i1=0; i1<NUM_OUTPUT; i1++) {
NNVect[i1] = N_OUT(i1)/10;
if (max < NNVect[i1]) {
ix = i1;
max = NNVect[i1];
}
}
ReturnValue->Val->Integer = ix;
}
void Cnnmatchblob(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) {
int ix, i1, max;
ix = Param[0]->Val->Integer;
if (ix > MAX_BLOBS)
ProgramFail(NULL, "nnmatchblob(): invalid blob index");
if (!blobcnt[ix])
ProgramFail(NULL, "nnmatchblob(): not a valid blob");
/* use data still in blob_buf[] (FRAME_BUF3)
square the aspect ratio of x1, x2, y1, y2
then subsample blob pixels to populate N_IN(0:63) with 0:1024 values
then nncalculate_network() and display the N_OUT() results */
nnscale8x8((unsigned char *)FRAME_BUF3, blobix[ix], blobx1[ix], blobx2[ix],
bloby1[ix], bloby2[ix], imgWidth, imgHeight);
nncalculate_network();
ix = 0;
max = 0;
for (i1=0; i1<NUM_OUTPUT; i1++) {
NNVect[i1] = N_OUT(i1)/10;
if (max < NNVect[i1]) {
ix = i1;
max = NNVect[i1];
}
}
ReturnValue->Val->Integer = ix;
}
void Cnnlearnblob (struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) {
int ix;
ix = Param[0]->Val->Integer;
if (ix > NUM_NPATTERNS)
ProgramFail(NULL, "nnlearnblob(): invalid index");
if (!blobcnt[0])
ProgramFail(NULL, "nnlearnblob(): no blob to grab");
nnscale8x8((unsigned char *)FRAME_BUF3, blobix[0], blobx1[0], blobx2[0],
bloby1[0], bloby2[0], imgWidth, imgHeight);
nnpack8x8(ix);
nndisplay(ix);
}
void Cautorun (struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) {
int ix, t0;
unsigned char ch;
ix = Param[0]->Val->Integer;
t0 = readRTC();
while (readRTC() < (t0 + ix*1000)) { // watch for ESC in 'ix' seconds
if (getchar(&ch)) {
if (ch == 0x1B) { // if ESC found, exit picoC
printf("found ESC\r\n");
ExitBuf[40] = 1;
longjmp(ExitBuf, 1);
}
}
}
}
void Clineno (struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) {
ReturnValue->Val->Integer = Parser->Line;
}
void Cerrormsg (struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs) {
PlatformErrorPrefix(Parser);
LibPrintf(Parser, ReturnValue, Param, NumArgs);
}
/* list of all library functions and their prototypes */
struct LibraryFunction PlatformLibrary[] =
{
{ Csignal, "int signal();" },
{ Csignal1, "int signal1();" },
{ Cinput, "int input();" },
{ Cinput1, "int input1();" },
{ Cinit_uart1, "void init_uart1(int);" },
{ Cread_int, "int read_int();" },
{ Cread_str, "int read_str(char *);" },
{ Coutput, "void output(int);" },
{ Coutput1, "void output1(int);" },
{ Cdelay, "void delay(int);" },
{ Crand, "int rand(int);" },
{ Ctime, "int time();" },
{ Ciodir, "void iodir(int);" },
{ Cioread, "int ioread();" },
{ Ciowrite, "void iowrite(int);" },
{ Cpeek, "int peek(int, int);" },
{ Cpoke, "void poke(int, int, int);" },
{ Cmotors, "void motors(int, int);" },
{ Cmotors2, "void motors2(int, int);" },
{ Cmotorx, "void motorx(int, int);" },
{ Cservos, "void servos(int, int);" },
{ Cservos2, "void servos2(int, int);" },
{ Cencoders, "void encoders();" },
{ Cencoderx, "int encoderx(int);" },
{ Claser, "void laser(int);" },
{ Csonar, "int sonar(int);" },
{ Crange, "int range();" },
{ Cbattery, "int battery();" },
{ Cvcolor, "void vcolor(int, int, int, int, int, int, int);" },
{ Cvfind, "int vfind(int, int, int, int, int);" },
{ Cvcam, "void vcam(int);" },
{ Cvcap, "void vcap();" },
{ Cvrcap, "void vrcap();" },
{ Cvdiff, "void vdiff(int);" },
{ Cvpix, "void vpix(int, int);" },
{ Cvscan, "int vscan(int, int);" },
{ Cvmean, "void vmean();" },
{ Cvblob, "int vblob(int, int);" },
{ Cvjpeg, "int vjpeg(int);" },
{ Cvsend, "void vsend(int);" },
{ Ccompass, "int compass();" },
{ Ccompassx, "int compassx();" },
{ Ccompassxcal, "void compassxcal(int, int, int, int, int);" },
{ Canalog, "int analog(int);" },
{ Canalogx, "int analogx(int);" },
{ Ctilt, "int tilt(int);" },
{ Cgps, "void gps();" },
{ Creadi2c, "int readi2c(int, int);" },
{ Creadi2c2, "int readi2c2(int, int);" },
{ Cwritei2c, "void writei2c(int, int, int);" },
{ Cabs, "int abs(int);" },
{ Csin, "int sin(int);" },
{ Ccos, "int cos(int);" },
{ Ctan, "int tan(int);" },
{ Casin, "int asin(int, int);" },
{ Cacos, "int acos(int, int);" },
{ Catan, "int atan(int, int);" },
{ Cgps_head, "int gps_head(int, int, int, int);" },
{ Cgps_dist, "int gps_dist(int, int, int, int);" },
{ Csqrt, "int sqrt(int);" },
{ Cnnshow, "void nnshow(int);" },
{ Cnnset, "void nnset(int, int, int, int, int, int, int, int, int);" },
{ Cnninit, "void nninit();" },
{ Cnntrain, "void nntrain();" },
{ Cnntest, "int nntest(int, int, int, int, int, int, int, int);" },
{ Cnnmatchblob, "int nnmatchblob(int);" },
{ Cnnlearnblob, "void nnlearnblob(int);" },
{ Cautorun, "void autorun(int);" },
{ Clineno, "int lineno();" },
{ Cerrormsg, "void errormsg(char *);" },
{ NULL, NULL }
};