picoc/expression.c

692 lines
30 KiB
C
Raw Normal View History

#include "picoc.h"
/* whether evaluation is left to right for a given precedence level */
#define IS_LEFT_TO_RIGHT(p) ((p) != 2 && (p) != 3 && (p) != 14)
/* local prototypes */
void ExpressionParseFunctionCall(struct ParseState *Parser, struct Value **Result, const char *FuncName);
#if 1
/* parse a single value */
int ExpressionParseValue(struct ParseState *Parser, struct Value **Result)
{
struct ParseState PreState = *Parser;
struct Value *LexValue;
int IntValue;
enum LexToken Token = LexGetToken(Parser, &LexValue, TRUE);
struct Value *LocalLValue = NULL;
struct ValueType *VType;
int Success = TRUE;
switch (Token)
{
case TokenIntegerConstant: case TokenCharacterConstant: case TokenFPConstant: case TokenStringConstant:
*Result = VariableAllocValueAndCopy(Parser, LexValue, FALSE);
break;
case TokenMinus: case TokenUnaryExor: case TokenUnaryNot:
IntValue = ExpressionParseInt(Parser);
if (Parser->Mode == RunModeRun)
{
*Result = VariableAllocValueFromType(Parser, &IntType, FALSE, NULL);
switch(Token)
{
case TokenMinus: (*Result)->Val->Integer = -IntValue; break;
case TokenUnaryExor: (*Result)->Val->Integer = ~IntValue; break;
case TokenUnaryNot: (*Result)->Val->Integer = !IntValue; break;
default: break;
}
}
break;
case TokenOpenBracket:
if (!ExpressionParse(Parser, Result))
ProgramFail(Parser, "invalid expression");
if (LexGetToken(Parser, NULL, TRUE) != TokenCloseBracket)
ProgramFail(Parser, "')' expected");
break;
case TokenAsterisk:
if (!ExpressionParse(Parser, Result))
ProgramFail(Parser, "invalid expression");
if ((*Result)->Typ->Base != TypePointer)
ProgramFail(Parser, "can't dereference this non-pointer");
LocalLValue = (*Result)->Val->Pointer.Segment;
VariableStackPop(Parser, *Result);
#if 0
*Result = VariableAllocValueAndCopy(struct ParseState *Parser, struct Value *FromValue, int OnHeap)
*Result = VariableAllocValueFromExistingData(Parser, (*Result)->Typ->FromType, (void *)LocalLValue->Val + LocalLValue->Val->Pointer.Segment,
LocalLValue->IsLValue, FromValue->IsLValue ? FromValue : NULL);
#endif
*Result = VariableAllocValueShared(Parser, LocalLValue);
break;
case TokenAmpersand:
if (!ExpressionParseValue(Parser, Result) || !(*Result)->IsLValue)
ProgramFail(Parser, "can't get the address of this");
VType = (*Result)->Typ;
LocalLValue = (*Result)->LValueFrom;
VariableStackPop(Parser, *Result);
*Result = VariableAllocValueFromType(Parser, TypeGetMatching(Parser, VType, TypePointer, 0, StrEmpty), FALSE, NULL);
(*Result)->Val->Pointer.Segment = LocalLValue;
(*Result)->Val->Pointer.Data.Offset = (void *)(*Result)->Val - (void *)(*Result)->LValueFrom;
break;
case TokenIdentifier:
if (LexGetToken(Parser, NULL, FALSE) == TokenOpenBracket)
ExpressionParseFunctionCall(Parser, Result, LexValue->Val->Identifier);
else
{
if (Parser->Mode == RunModeRun)
{
VariableGet(Parser, LexValue->Val->Identifier, &LocalLValue);
if (LocalLValue->Typ->Base == TypeMacro)
{
struct ParseState MacroParser = LocalLValue->Val->Parser;
if (!ExpressionParse(&MacroParser, Result) || LexGetToken(&MacroParser, NULL, FALSE) != TokenEndOfFunction)
ProgramFail(&MacroParser, "expression expected");
}
else if (LocalLValue->Typ == TypeVoid)
ProgramFail(Parser, "a void value isn't much use here");
else
{ /* it's a value variable */
*Result = VariableAllocValueShared(Parser, LocalLValue);
}
}
/* see if there's a postfix operator */
Token = LexGetToken(Parser, &LexValue, FALSE);
if (Token == TokenIncrement || Token == TokenDecrement)
{ /* it's a postincrement or postdecrement */
LexGetToken(Parser, &LexValue, TRUE);
if (Parser->Mode == RunModeRun)
{
if (!(*Result)->IsLValue || (*Result)->Typ->Base != TypeInt)
ProgramFail(Parser, "can't %s this", (Token == TokenIncrement) ? "increment" : "decrement");
if (Token == TokenIncrement)
(*Result)->Val->Integer++;
else
(*Result)->Val->Integer--;
}
}
else if (Token == TokenLeftSquareBracket)
{ /* array access */
LexGetToken(Parser, &LexValue, TRUE);
IntValue = ExpressionParseInt(Parser);
if (LexGetToken(Parser, &LexValue, TRUE) != TokenRightSquareBracket)
ProgramFail(Parser, "expected ']'");
if (Parser->Mode == RunModeRun)
{ /* look up the array element */
if ((*Result)->Typ->Base != TypeArray)
ProgramFail(Parser, "not an array");
if (IntValue < 0 || IntValue >= (*Result)->Val->Array.Size)
ProgramFail(Parser, "illegal array index");
VariableStackPop(Parser, *Result);
*Result = VariableAllocValueFromExistingData(Parser, (*Result)->Typ->FromType, (union AnyValue *)((*Result)->Val->Array.Data + TypeSize((*Result)->Typ->FromType, 0) * IntValue), (*Result)->IsLValue, (*Result)->LValueFrom);
}
}
}
break;
default:
*Parser = PreState;
Success = FALSE;
break;
}
return Success;
}
#ifndef NO_FP
struct Value *ParsePushFP(struct ParseState *Parser, double NewFP)
{
struct Value *Val = VariableAllocValueFromType(Parser, &FPType, FALSE, NULL);
Val->Val->FP = NewFP;
return Val;
}
#endif
struct Value *ParsePushInt(struct ParseState *Parser, int NewInt)
{
struct Value *Val = VariableAllocValueFromType(Parser, &IntType, FALSE, NULL);
Val->Val->Integer = NewInt;
return Val;
}
/* parse an expression. operator precedence is not supported */
int ExpressionParse(struct ParseState *Parser, struct Value **Result)
{
struct Value *CurrentValue;
struct Value *TotalValue;
if (!ExpressionParseValue(Parser, &TotalValue))
return FALSE;
while (TRUE)
{
enum LexToken Token = LexGetToken(Parser, NULL, FALSE);
switch (Token)
{
case TokenPlus: case TokenMinus: case TokenAsterisk: case TokenSlash:
case TokenEqual: case TokenLessThan: case TokenGreaterThan:
case TokenLessEqual: case TokenGreaterEqual: case TokenLogicalAnd:
case TokenLogicalOr: case TokenAmpersand: case TokenArithmeticOr:
case TokenArithmeticExor:
LexGetToken(Parser, NULL, TRUE);
break;
case TokenDot:
{
struct Value *Ident;
LexGetToken(Parser, NULL, TRUE);
if (LexGetToken(Parser, &Ident, TRUE) != TokenIdentifier)
ProgramFail(Parser, "need an structure or union member after '.'");
if (Parser->Mode == RunModeRun)
{
void *TotalValueData = (void *)TotalValue->Val;
struct Value *TotalLValueFrom = TotalValue->LValueFrom;
if (TotalValue->Typ->Base != TypeStruct && TotalValue->Typ->Base != TypeUnion)
ProgramFail(Parser, "can't use '.' on something that's not a struct or union");
if (!TableGet(TotalValue->Typ->Members, Ident->Val->Identifier, &CurrentValue))
ProgramFail(Parser, "structure doesn't have a member called '%s'", Ident->Val->Identifier);
VariableStackPop(Parser, TotalValue);
TotalValue = VariableAllocValueFromExistingData(Parser, CurrentValue->Typ, TotalValueData + CurrentValue->Val->Integer, TRUE, TotalLValueFrom);
}
continue;
}
case TokenArrow:
{
struct Value *Ident;
LexGetToken(Parser, NULL, TRUE);
if (LexGetToken(Parser, &Ident, TRUE) != TokenIdentifier)
ProgramFail(Parser, "need an structure or union member after '->'");
if (Parser->Mode == RunModeRun)
{
void *TotalValueData;
struct Value *DerefValue;
if (TotalValue->Typ->Base != TypePointer)
ProgramFail(Parser, "can't dereference this non-pointer");
DerefValue = TotalValue->Val->Pointer.Segment;
TotalValueData = (void *)DerefValue->Val;
if (DerefValue->Typ->Base != TypeStruct && DerefValue->Typ->Base != TypeUnion)
ProgramFail(Parser, "can't use '->' on something that's not a struct or union");
if (!TableGet(DerefValue->Typ->Members, Ident->Val->Identifier, &CurrentValue))
ProgramFail(Parser, "structure doesn't have a member called '%s'", Ident->Val->Identifier);
VariableStackPop(Parser, TotalValue);
TotalValue = VariableAllocValueFromExistingData(Parser, CurrentValue->Typ, TotalValueData + CurrentValue->Val->Integer, TRUE, DerefValue);
}
continue;
}
case TokenAssign:
LexGetToken(Parser, NULL, TRUE);
if (!ExpressionParse(Parser, &CurrentValue))
ProgramFail(Parser, "expression expected");
if (Parser->Mode == RunModeRun)
{ /* do the assignment */
if (!TotalValue->IsLValue)
ProgramFail(Parser, "can't assign to this");
if (CurrentValue->Typ != TotalValue->Typ)
ProgramFail(Parser, "can't assign incompatible types");
if (TotalValue->Typ->Base != TypeArray)
memcpy(TotalValue->Val, CurrentValue->Val, TotalValue->Typ->Sizeof);
else
{ /* array assignment */
if (TotalValue->Val->Array.Size != CurrentValue->Val->Array.Size)
ProgramFail(Parser, "incompatible array sizes in assignment");
//memcpy(TotalValue->Val->Array.Data, CurrentValue->Val->Array.Data, CurrentValue->Typ->Sizeof * CurrentValue->Val->Array.Size);
}
VariableStackPop(Parser, CurrentValue);
*Result = TotalValue;
}
return TRUE;
case TokenAddAssign: case TokenSubtractAssign:
LexGetToken(Parser, NULL, TRUE);
if (!ExpressionParse(Parser, &CurrentValue))
ProgramFail(Parser, "expression expected");
if (Parser->Mode == RunModeRun)
{ /* do the assignment */
if (!TotalValue->IsLValue)
ProgramFail(Parser, "can't assign");
if (CurrentValue->Typ->Base == TypeInt && TotalValue->Typ->Base == TypeInt)
{
switch (Token)
{
case TokenAddAssign: TotalValue->Val->Integer += CurrentValue->Val->Integer; break;
case TokenSubtractAssign: TotalValue->Val->Integer -= CurrentValue->Val->Integer; break;
default: break;
}
VariableStackPop(Parser, CurrentValue);
}
#ifndef NO_FP
else if (CurrentValue->Typ->Base == TypeFP && TotalValue->Typ->Base == TypeFP)
{
switch (Token)
{
case TokenAddAssign: TotalValue->Val->FP += CurrentValue->Val->FP; break;
case TokenSubtractAssign: TotalValue->Val->FP -= CurrentValue->Val->FP; break;
default: break;
}
VariableStackPop(Parser, CurrentValue);
}
#endif
else
ProgramFail(Parser, "can't operate and assign these types");
}
// fallthrough
default:
if (Parser->Mode == RunModeRun)
*Result = TotalValue;
return TRUE;
}
if (!ExpressionParseValue(Parser, &CurrentValue))
return FALSE;
if (Parser->Mode == RunModeRun)
{
#ifndef NO_FP
if (CurrentValue->Typ->Base == TypeFP || TotalValue->Typ->Base == TypeFP)
{ /* floating point expression */
double FPTotal, FPCurrent, FPResult;
if (CurrentValue->Typ->Base != TypeFP || TotalValue->Typ->Base != TypeFP)
{ /* convert both to floating point */
if (CurrentValue->Typ->Base == TypeInt)
FPCurrent = (double)CurrentValue->Val->Integer;
else if (CurrentValue->Typ->Base == TypeFP)
FPCurrent = CurrentValue->Val->FP;
else
ProgramFail(Parser, "bad type for operator");
if (TotalValue->Typ->Base == TypeInt)
FPTotal = (double)TotalValue->Val->Integer;
else if (TotalValue->Typ->Base == TypeFP)
FPTotal = TotalValue->Val->FP;
else
ProgramFail(Parser, "bad type for operator");
}
VariableStackPop(Parser, CurrentValue);
VariableStackPop(Parser, TotalValue);
switch (Token)
{
case TokenPlus: FPResult = FPTotal + FPCurrent; break;
case TokenMinus: FPResult = FPTotal - FPCurrent; break;
case TokenAsterisk: FPResult = FPTotal * FPCurrent; break;
case TokenSlash: FPResult = FPTotal / FPCurrent; break;
case TokenEqual: FPResult = FPTotal == FPCurrent; break;
case TokenLessThan: FPResult = FPTotal < FPCurrent; break;
case TokenGreaterThan: FPResult = FPTotal > FPCurrent; break;
case TokenLessEqual: FPResult = FPTotal <= FPCurrent; break;
case TokenGreaterEqual: FPResult = FPTotal >= FPCurrent; break;
case TokenLogicalAnd: case TokenLogicalOr: case TokenAmpersand: case TokenArithmeticOr: case TokenArithmeticExor: ProgramFail(Parser, "bad type for operator"); break;
default: break;
}
TotalValue = ParsePushFP(Parser, FPResult);
}
else
#endif
{ /* integer expression */
int IntX, IntY, IntResult;
if (CurrentValue->Typ->Base != TypeInt || TotalValue->Typ->Base != TypeInt)
ProgramFail(Parser, "bad operand types");
IntX = TotalValue->Val->Integer;
IntY = CurrentValue->Val->Integer;
VariableStackPop(Parser, CurrentValue);
VariableStackPop(Parser, TotalValue);
/* integer arithmetic */
switch (Token)
{
case TokenPlus: IntResult = IntX + IntY; break;
case TokenMinus: IntResult = IntX - IntY; break;
case TokenAsterisk: IntResult = IntX * IntY; break;
case TokenSlash: IntResult = IntX / IntY; break;
case TokenEqual: IntResult = IntX == IntY; break;
case TokenLessThan: IntResult = IntX < IntY; break;
case TokenGreaterThan: IntResult = IntX > IntY; break;
case TokenLessEqual: IntResult = IntX <= IntY; break;
case TokenGreaterEqual: IntResult = IntX >= IntY; break;
case TokenLogicalAnd: IntResult = IntX && IntY; break;
case TokenLogicalOr: IntResult = IntX || IntY; break;
case TokenAmpersand: IntResult = IntX & IntY; break;
case TokenArithmeticOr: IntResult = IntX | IntY; break;
case TokenArithmeticExor: IntResult = IntX ^ IntY; break;
default: break;
}
TotalValue = ParsePushInt(Parser, IntResult);
}
*Result = TotalValue;
}
}
return TRUE;
}
#else
enum OperatorOrder
{
OrderPrefix,
OrderInfix,
OrderPostfix
};
/* a stack of expressions we use in evaluation */
struct ExpressionStack
{
struct ExprStack *Next; /* the next lower item on the stack */
struct Value *Val; /* the value for this stack node */
enum EvaluationOrder Order; /* the evaluation order of this operator */
enum LexToken Op; /* the operator */
short Precedence; /* the operator precedence of this node */
short LeftToRight; /* indicates left to right evaluation, otherwise right to left */
};
/* operator precedence definitions */
struct OpPrecedence
{
unsigned char PrefixPrecedence:4;
unsigned char PostfixPrecedence:4;
unsigned char InfixPrecedence:4;
};
static struct OpPrecedence OperatorPrecedence[] =
{
/* TokenComma, */ { 0, 0, 1 },
/* TokenAssign, */ { 0, 0, 2 }, /* TokenAddAssign, */ { 0, 0, 2 }, /* TokenSubtractAssign, */ { 0, 0, 2 },
/* TokenMultiplyAssign, */ { 0, 0, 2 }, /* TokenDivideAssign, */ { 0, 0, 2 }, /* TokenModulusAssign, */ { 0, 0, 2 },
/* TokenShiftLeftAssign, */ { 0, 0, 2 }, /* TokenShiftRightAssign, */ { 0, 0, 2 }, /* TokenArithmeticAndAssign, */ { 0, 0, 2 },
/* TokenArithmeticOrAssign, */ { 0, 0, 2 }, /* TokenArithmeticExorAssign, */ { 0, 0, 2 },
/* TokenQuestionMark, */ { 0, 0, 3 }, /* TokenColon, */ { 0, 0, 3 },
/* TokenLogicalOr, */ { 0, 0, 4 },
/* TokenLogicalAnd, */ { 0, 0, 5 },
/* TokenArithmeticOr, */ { 0, 0, 6 },
/* TokenTilde, */ { 0, 0, 7 },
/* TokenAmpersand, */ { 14, 0, 8 },
/* TokenEqual, TokenNotEqual, */ { 0, 0, 9 },
/* TokenLessThan, */ { 0, 0, 10 }, /* TokenGreaterThan, */ { 0, 0, 10 }, /* TokenLessEqual, */ { 0, 0, 10 }, /* TokenGreaterEqual, */ { 0, 0, 10 },
/* TokenShiftLeft, */ { 0, 0, 11 }, /* TokenShiftRight, */ { 0, 0, 11 },
/* TokenPlus, */ { 14, 0, 12 }, /* TokenMinus, */ { 14, 0, 12 },
/* TokenAsterisk, */ { 14, 0, 13 }, /* TokenSlash, */ { 0, 0, 13 }, /* TokenModulus, */ { 0, 0, 13 },
/* TokenIncrement, */ { 14, 15, 0 }, /* TokenDecrement, */ { 14, 15, 0 }, /* TokenUnaryNot, */ { 14, 0, 0 }, /* TokenUnaryExor, */ { 14, 0, 0 }, /* TokenSizeof, */ { 14, 0, 0 },
/* TokenLeftSquareBracket, */ { 15, 0, 0 }, /* TokenRightSquareBracket, */ { 0, 15, 0 }, /* TokenDot, */ { 0, 0, 15 }, /* TokenArrow, */ { 0, 0, 15 },
/* TokenOpenBracket, */ { 15, 0, 0 }, /* TokenCloseBracket, */ { 0, 15, 0 }
};
/* take the contents of the expression stack and compute the top until there's nothing greater than the given precedence */
void ExpressionStackCollapse(struct ParseState *Parser, struct ExpressionStack **StackTop, int Precedence)
{
}
/* push an operator on to the expression stack */
void ExpressionStackPushOperator(struct ParseState *Parser, struct ExpressionStack **StackTop, enum OperatorOrder Order, enum LexToken Token, int Precedence, int LeftToRight)
{
struct ExpressionStack *StackNode = VariableAlloc(Parser, sizeof(struct ExpressionStack), FALSE);
StackNode->Next = *StackTop;
StackNode->Order = Order;
StackNode->Op = Token;
StackNode->Precedence = Precedence;
StackNode->LeftToRight = LeftToRight;
*StackTop = StackNode;
}
/* push a value on to the expression stack */
void ExpressionStackPushValue(struct ParseState *Parser, struct ExpressionStack **StackTop, struct Value *PushValue)
{
struct Value *ValueLoc = VariableAllocValueAndCopy(Parser, PushValue, FALSE);
struct ExpressionStack *StackNode = VariableAlloc(Parser, sizeof(struct ExpressionStack), FALSE);
StackNode->Next = *StackTop;
StackNode->Val = ValueLoc;
*StackTop = StackNode;
}
/* parse an expression with operator precedence */
int ExpressionParse(struct ParseState *Parser, struct Value **Result)
{
struct Value *LexValue;
bool PrefixState = false;
bool Done = false;
int BracketPrecedence = 0;
int LocalPrecedence;
int Precedence = 0;
struct ExpressionStack *StackTop = NULL;
do
{
enum LexToken Token = LexGetToken(Parser, &LexValue, TRUE);
if ((int)Token <= (int)TokenCloseBracket)
{ /* it's an operator with precedence */
if (PrefixState)
{ /* expect a prefix operator */
if (OperatorPrecedence[(int)Token].PrefixPrecedence == 0)
ProgramFail(Parser, "operator not expected here");
if (Parser->Mode == RunModeRun)
{
LocalPrecedence = OperatorPrecedence[(int)Token].PrefixPrecedence;
Precedence = BracketPrecedence + LocalPrecedence;
if (Token == TokenOpenBracket || Token == TokenLeftSquareBracket)
{ /* boost the bracket operator precedence, then push */
BracketPrecedence += BRACKET_PREDECENCE;
ExpressionStackPushOperator(Parser, &StackTop, OrderPrefix, Token, Precedence, IS_LEFT_TO_RIGHT(LocalPrecedence));
}
else
{ /* scan and collapse the stack to the precedence of this operator, then push */
ExpressionStackCollapse(Parser, &StackTop, Precedence);
ExpressionStackPushOperator(Parser, &StackTop, OrderPrefix, Token, Precedence);
}
}
}
else
{ /* expect an infix or postfix operator */
if (OperatorPrecedence[(int)Token].PostfixPrecedence != 0)
{
switch (Token)
{
case TokenCloseBracket:
if (BracketPrecedence == 0)
{ /* assume this bracket is after the end of the expression */
Done = true;
}
else
BracketPrecedence -= BRACKET_PRECEDENCE;
break;
case TokenRightSquareBracket:
if (BracketPrecedence == 0)
ProgramFail(Parser, "no matching open square bracket");
/* scan and collapse the stack to bracket precedence */
ExpressionStackCollapse(Parser, &StackTop, BracketPrecedence);
BracketPrecedence -= BRACKET_PRECEDENCE;
/* apply the array index operator */
// XXX
break;
default:
/* scan and collapse the stack to the precedence of this operator, then push */
Precedence = BracketPrecedence + OperatorPrecedence[(int)Token].PostfixPrecedence;
ExpressionStackCollapse(Parser, &StackTop, Precedence);
ExpressionStackPushOperator(Parser, &StackTop, OrderPostfix, Token, Precedence);
break;
}
}
else if (OperatorPrecedence[(int)Token].InfixPrecedence != 0)
{ /* scan and collapse the stack to the precedence of this operator, then push */
Precedence = BracketPrecedence + OperatorPrecedence[(int)Token].InfixPrecedence;
ExpressionStackCollapse(Parser, &StackTop, Precedence);
ExpressionStackPushOperator(Parser, &StackTop, OrderInfix, Token, Precedence);
PrefixState = true;
}
else
ProgramFail(Parser, "operator not expected here");
}
}
else if ((int)Token <= (int)TokenCharacterConstant)
{ /* it's a value of some sort, push it */
if (!PrefixState)
ProgramFail(Parser, "value not expected here");
PrefixState = false;
ExpressionStackPushValue(Parser, &StackTop, LexValue);
}
else
{ /* it isn't a token from an expression */
Done = true;
}
} while (!Done);
/* scan and collapse the stack to precedence 0 */
ExpressionStackCollapse(Parser, &StackTop, 0);
//XXX - fix up the stack and return the result if we're in run mode
}
#endif
/* parse an expression. operator precedence is not supported */
int ExpressionParseInt(struct ParseState *Parser)
{
struct Value *Val;
int Result = 0;
if (!ExpressionParse(Parser, &Val))
ProgramFail(Parser, "expression expected");
if (Parser->Mode == RunModeRun)
{
if (Val->Typ->Base != TypeInt)
ProgramFail(Parser, "integer value expected");
Result = Val->Val->Integer;
VariableStackPop(Parser, Val);
}
return Result;
}
/* do a function call */
void ExpressionParseFunctionCall(struct ParseState *Parser, struct Value **Result, const char *FuncName)
{
struct Value *FuncValue;
struct Value *Param;
struct Value **ParamArray;
int ArgCount;
enum LexToken Token = LexGetToken(Parser, NULL, TRUE); /* open bracket */
if (Parser->Mode == RunModeRun)
{ /* get the function definition */
VariableGet(Parser, FuncName, &FuncValue);
if (FuncValue->Typ->Base != TypeFunction)
ProgramFail(Parser, "not a function - can't call");
*Result = VariableAllocValueFromType(Parser, FuncValue->Val->FuncDef.ReturnType, FALSE, NULL);
HeapPushStackFrame();
ParamArray = HeapAllocStack(sizeof(struct Value *) * FuncValue->Val->FuncDef.NumParams);
if (ParamArray == NULL)
ProgramFail(Parser, "out of memory");
}
/* parse arguments */
ArgCount = 0;
do {
if (ExpressionParse(Parser, &Param))
{
if (Parser->Mode == RunModeRun)
{
if (ArgCount >= FuncValue->Val->FuncDef.NumParams)
{
if (!FuncValue->Val->FuncDef.VarArgs)
ProgramFail(Parser, "too many arguments to %s()", FuncName);
}
else
{
if (FuncValue->Val->FuncDef.ParamType[ArgCount] != Param->Typ)
ProgramFail(Parser, "parameter %d to %s() is the wrong type", ArgCount+1, FuncName);
}
if (ArgCount < FuncValue->Val->FuncDef.NumParams)
ParamArray[ArgCount] = Param;
}
ArgCount++;
Token = LexGetToken(Parser, NULL, TRUE);
if (Token != TokenComma && Token != TokenCloseBracket)
ProgramFail(Parser, "comma expected");
}
else
{ /* end of argument list? */
Token = LexGetToken(Parser, NULL, TRUE);
if (!TokenCloseBracket)
ProgramFail(Parser, "bad argument");
}
} while (Token != TokenCloseBracket);
if (Parser->Mode == RunModeRun)
{ /* run the function */
if (ArgCount < FuncValue->Val->FuncDef.NumParams)
ProgramFail(Parser, "not enough arguments to '%s'", FuncName);
if (FuncValue->Val->FuncDef.Intrinsic == NULL)
{ /* run a user-defined function */
struct ParseState FuncParser = FuncValue->Val->FuncDef.Body;
int Count;
VariableStackFrameAdd(Parser, FuncValue->Val->FuncDef.Intrinsic ? FuncValue->Val->FuncDef.NumParams : 0);
TopStackFrame->NumParams = ArgCount;
TopStackFrame->ReturnValue = *Result;
for (Count = 0; Count < FuncValue->Val->FuncDef.NumParams; Count++)
VariableDefine(Parser, FuncValue->Val->FuncDef.ParamName[Count], ParamArray[Count]);
if (!ParseStatement(&FuncParser))
ProgramFail(&FuncParser, "function body expected");
if (FuncValue->Val->FuncDef.ReturnType != (*Result)->Typ)
ProgramFail(&FuncParser, "bad type of return value");
VariableStackFramePop(Parser);
}
else
FuncValue->Val->FuncDef.Intrinsic(Parser, *Result, ParamArray, ArgCount);
HeapPopStackFrame();
}
}