diff --git a/docs/api.md b/docs/api.md
index 5fc946ce..e79b6f5a 100644
--- a/docs/api.md
+++ b/docs/api.md
@@ -17,7 +17,7 @@
### Model names
-Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q4_1` and `llama2:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
+Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q4_1` and `llama3:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
### Durations
@@ -66,7 +66,7 @@ Enable JSON mode by setting the `format` parameter to `json`. This will structur
```shell
curl http://localhost:11434/api/generate -d '{
- "model": "llama2",
+ "model": "llama3",
"prompt": "Why is the sky blue?"
}'
```
@@ -77,7 +77,7 @@ A stream of JSON objects is returned:
```json
{
- "model": "llama2",
+ "model": "llama3",
"created_at": "2023-08-04T08:52:19.385406455-07:00",
"response": "The",
"done": false
@@ -99,7 +99,7 @@ To calculate how fast the response is generated in tokens per second (token/s),
```json
{
- "model": "llama2",
+ "model": "llama3",
"created_at": "2023-08-04T19:22:45.499127Z",
"response": "",
"done": true,
@@ -121,7 +121,7 @@ A response can be received in one reply when streaming is off.
```shell
curl http://localhost:11434/api/generate -d '{
- "model": "llama2",
+ "model": "llama3",
"prompt": "Why is the sky blue?",
"stream": false
}'
@@ -133,7 +133,7 @@ If `stream` is set to `false`, the response will be a single JSON object:
```json
{
- "model": "llama2",
+ "model": "llama3",
"created_at": "2023-08-04T19:22:45.499127Z",
"response": "The sky is blue because it is the color of the sky.",
"done": true,
@@ -155,7 +155,7 @@ If `stream` is set to `false`, the response will be a single JSON object:
```shell
curl http://localhost:11434/api/generate -d '{
- "model": "llama2",
+ "model": "llama3",
"prompt": "What color is the sky at different times of the day? Respond using JSON",
"format": "json",
"stream": false
@@ -166,7 +166,7 @@ curl http://localhost:11434/api/generate -d '{
```json
{
- "model": "llama2",
+ "model": "llama3",
"created_at": "2023-11-09T21:07:55.186497Z",
"response": "{\n\"morning\": {\n\"color\": \"blue\"\n},\n\"noon\": {\n\"color\": \"blue-gray\"\n},\n\"afternoon\": {\n\"color\": \"warm gray\"\n},\n\"evening\": {\n\"color\": \"orange\"\n}\n}\n",
"done": true,
@@ -289,7 +289,7 @@ If you want to set custom options for the model at runtime rather than in the Mo
```shell
curl http://localhost:11434/api/generate -d '{
- "model": "llama2",
+ "model": "llama3",
"prompt": "Why is the sky blue?",
"stream": false,
"options": {
@@ -332,7 +332,7 @@ curl http://localhost:11434/api/generate -d '{
```json
{
- "model": "llama2",
+ "model": "llama3",
"created_at": "2023-08-04T19:22:45.499127Z",
"response": "The sky is blue because it is the color of the sky.",
"done": true,
@@ -354,7 +354,7 @@ If an empty prompt is provided, the model will be loaded into memory.
```shell
curl http://localhost:11434/api/generate -d '{
- "model": "llama2"
+ "model": "llama3"
}'
```
@@ -364,7 +364,7 @@ A single JSON object is returned:
```json
{
- "model": "llama2",
+ "model": "llama3",
"created_at": "2023-12-18T19:52:07.071755Z",
"response": "",
"done": true
@@ -407,7 +407,7 @@ Send a chat message with a streaming response.
```shell
curl http://localhost:11434/api/chat -d '{
- "model": "llama2",
+ "model": "llama3",
"messages": [
{
"role": "user",
@@ -423,7 +423,7 @@ A stream of JSON objects is returned:
```json
{
- "model": "llama2",
+ "model": "llama3",
"created_at": "2023-08-04T08:52:19.385406455-07:00",
"message": {
"role": "assistant",
@@ -438,7 +438,7 @@ Final response:
```json
{
- "model": "llama2",
+ "model": "llama3",
"created_at": "2023-08-04T19:22:45.499127Z",
"done": true,
"total_duration": 4883583458,
@@ -456,7 +456,7 @@ Final response:
```shell
curl http://localhost:11434/api/chat -d '{
- "model": "llama2",
+ "model": "llama3",
"messages": [
{
"role": "user",
@@ -471,7 +471,7 @@ curl http://localhost:11434/api/chat -d '{
```json
{
- "model": "registry.ollama.ai/library/llama2:latest",
+ "model": "registry.ollama.ai/library/llama3:latest",
"created_at": "2023-12-12T14:13:43.416799Z",
"message": {
"role": "assistant",
@@ -495,7 +495,7 @@ Send a chat message with a conversation history. You can use this same approach
```shell
curl http://localhost:11434/api/chat -d '{
- "model": "llama2",
+ "model": "llama3",
"messages": [
{
"role": "user",
@@ -519,7 +519,7 @@ A stream of JSON objects is returned:
```json
{
- "model": "llama2",
+ "model": "llama3",
"created_at": "2023-08-04T08:52:19.385406455-07:00",
"message": {
"role": "assistant",
@@ -533,7 +533,7 @@ Final response:
```json
{
- "model": "llama2",
+ "model": "llama3",
"created_at": "2023-08-04T19:22:45.499127Z",
"done": true,
"total_duration": 8113331500,
@@ -591,7 +591,7 @@ curl http://localhost:11434/api/chat -d '{
```shell
curl http://localhost:11434/api/chat -d '{
- "model": "llama2",
+ "model": "llama3",
"messages": [
{
"role": "user",
@@ -609,7 +609,7 @@ curl http://localhost:11434/api/chat -d '{
```json
{
- "model": "registry.ollama.ai/library/llama2:latest",
+ "model": "registry.ollama.ai/library/llama3:latest",
"created_at": "2023-12-12T14:13:43.416799Z",
"message": {
"role": "assistant",
@@ -651,7 +651,7 @@ Create a new model from a `Modelfile`.
```shell
curl http://localhost:11434/api/create -d '{
"name": "mario",
- "modelfile": "FROM llama2\nSYSTEM You are mario from Super Mario Bros."
+ "modelfile": "FROM llama3\nSYSTEM You are mario from Super Mario Bros."
}'
```
@@ -758,7 +758,7 @@ A single JSON object will be returned.
}
},
{
- "name": "llama2:latest",
+ "name": "llama3:latest",
"modified_at": "2023-12-07T09:32:18.757212583-08:00",
"size": 3825819519,
"digest": "fe938a131f40e6f6d40083c9f0f430a515233eb2edaa6d72eb85c50d64f2300e",
@@ -792,7 +792,7 @@ Show information about a model including details, modelfile, template, parameter
```shell
curl http://localhost:11434/api/show -d '{
- "name": "llama2"
+ "name": "llama3"
}'
```
@@ -827,8 +827,8 @@ Copy a model. Creates a model with another name from an existing model.
```shell
curl http://localhost:11434/api/copy -d '{
- "source": "llama2",
- "destination": "llama2-backup"
+ "source": "llama3",
+ "destination": "llama3-backup"
}'
```
@@ -854,7 +854,7 @@ Delete a model and its data.
```shell
curl -X DELETE http://localhost:11434/api/delete -d '{
- "name": "llama2:13b"
+ "name": "llama3:13b"
}'
```
@@ -882,7 +882,7 @@ Download a model from the ollama library. Cancelled pulls are resumed from where
```shell
curl http://localhost:11434/api/pull -d '{
- "name": "llama2"
+ "name": "llama3"
}'
```
diff --git a/docs/faq.md b/docs/faq.md
index 7ade43b7..6da8c545 100644
--- a/docs/faq.md
+++ b/docs/faq.md
@@ -32,7 +32,7 @@ When using the API, specify the `num_ctx` parameter:
```
curl http://localhost:11434/api/generate -d '{
- "model": "llama2",
+ "model": "llama3",
"prompt": "Why is the sky blue?",
"options": {
"num_ctx": 4096
@@ -88,9 +88,9 @@ On windows, Ollama inherits your user and system environment variables.
3. Edit or create New variable(s) for your user account for `OLLAMA_HOST`, `OLLAMA_MODELS`, etc.
-4. Click OK/Apply to save
+4. Click OK/Apply to save
-5. Run `ollama` from a new terminal window
+5. Run `ollama` from a new terminal window
## How can I expose Ollama on my network?
@@ -221,12 +221,12 @@ The `keep_alive` parameter can be set to:
For example, to preload a model and leave it in memory use:
```shell
-curl http://localhost:11434/api/generate -d '{"model": "llama2", "keep_alive": -1}'
+curl http://localhost:11434/api/generate -d '{"model": "llama3", "keep_alive": -1}'
```
To unload the model and free up memory use:
```shell
-curl http://localhost:11434/api/generate -d '{"model": "llama2", "keep_alive": 0}'
+curl http://localhost:11434/api/generate -d '{"model": "llama3", "keep_alive": 0}'
```
Alternatively, you can change the amount of time all models are loaded into memory by setting the `OLLAMA_KEEP_ALIVE` environment variable when starting the Ollama server. The `OLLAMA_KEEP_ALIVE` variable uses the same parameter types as the `keep_alive` parameter types mentioned above. Refer to section explaining [how to configure the Ollama server](#how-do-i-configure-ollama-server) to correctly set the environment variable.
diff --git a/docs/modelfile.md b/docs/modelfile.md
index 24002bde..21ee1826 100644
--- a/docs/modelfile.md
+++ b/docs/modelfile.md
@@ -10,7 +10,7 @@ A model file is the blueprint to create and share models with Ollama.
- [Examples](#examples)
- [Instructions](#instructions)
- [FROM (Required)](#from-required)
- - [Build from llama2](#build-from-llama2)
+ - [Build from llama3](#build-from-llama3)
- [Build from a bin file](#build-from-a-bin-file)
- [PARAMETER](#parameter)
- [Valid Parameters and Values](#valid-parameters-and-values)
@@ -48,7 +48,7 @@ INSTRUCTION arguments
An example of a `Modelfile` creating a mario blueprint:
```modelfile
-FROM llama2
+FROM llama3
# sets the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
# sets the context window size to 4096, this controls how many tokens the LLM can use as context to generate the next token
@@ -67,33 +67,25 @@ To use this:
More examples are available in the [examples directory](../examples).
-### `Modelfile`s in [ollama.com/library][1]
-
-There are two ways to view `Modelfile`s underlying the models in [ollama.com/library][1]:
-
-- Option 1: view a details page from a model's tags page:
- 1. Go to a particular model's tags (e.g. https://ollama.com/library/llama2/tags)
- 2. Click on a tag (e.g. https://ollama.com/library/llama2:13b)
- 3. Scroll down to "Layers"
- - Note: if the [`FROM` instruction](#from-required) is not present,
- it means the model was created from a local file
-- Option 2: use `ollama show` to print the `Modelfile` for any local models like so:
+To view the Modelfile of a given model, use the `ollama show --modelfile` command.
```bash
- > ollama show --modelfile llama2:13b
+ > ollama show --modelfile llama3
# Modelfile generated by "ollama show"
# To build a new Modelfile based on this one, replace the FROM line with:
- # FROM llama2:13b
+ # FROM llama3:latest
+ FROM /Users/pdevine/.ollama/models/blobs/sha256-00e1317cbf74d901080d7100f57580ba8dd8de57203072dc6f668324ba545f29
+ TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>
- FROM /root/.ollama/models/blobs/sha256:123abc
- TEMPLATE """[INST] {{ if .System }}<>{{ .System }}<>
+ {{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
- {{ end }}{{ .Prompt }} [/INST] """
- SYSTEM """"""
- PARAMETER stop [INST]
- PARAMETER stop [/INST]
- PARAMETER stop <>
- PARAMETER stop <>
+ {{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
+
+ {{ .Response }}<|eot_id|>"""
+ PARAMETER stop "<|start_header_id|>"
+ PARAMETER stop "<|end_header_id|>"
+ PARAMETER stop "<|eot_id|>"
+ PARAMETER stop "<|reserved_special_token"
```
## Instructions
@@ -106,10 +98,10 @@ The `FROM` instruction defines the base model to use when creating a model.
FROM :
```
-#### Build from llama2
+#### Build from llama3
```modelfile
-FROM llama2
+FROM llama3
```
A list of available base models:
diff --git a/docs/openai.md b/docs/openai.md
index b4dc1f21..557b5846 100644
--- a/docs/openai.md
+++ b/docs/openai.md
@@ -25,7 +25,7 @@ chat_completion = client.chat.completions.create(
'content': 'Say this is a test',
}
],
- model='llama2',
+ model='llama3',
)
```
@@ -43,7 +43,7 @@ const openai = new OpenAI({
const chatCompletion = await openai.chat.completions.create({
messages: [{ role: 'user', content: 'Say this is a test' }],
- model: 'llama2',
+ model: 'llama3',
})
```
@@ -53,7 +53,7 @@ const chatCompletion = await openai.chat.completions.create({
curl http://localhost:11434/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
- "model": "llama2",
+ "model": "llama3",
"messages": [
{
"role": "system",
@@ -113,7 +113,7 @@ curl http://localhost:11434/v1/chat/completions \
Before using a model, pull it locally `ollama pull`:
```shell
-ollama pull llama2
+ollama pull llama3
```
### Default model names
@@ -121,7 +121,7 @@ ollama pull llama2
For tooling that relies on default OpenAI model names such as `gpt-3.5-turbo`, use `ollama cp` to copy an existing model name to a temporary name:
```
-ollama cp llama2 gpt-3.5-turbo
+ollama cp llama3 gpt-3.5-turbo
```
Afterwards, this new model name can be specified the `model` field:
diff --git a/docs/tutorials/langchainjs.md b/docs/tutorials/langchainjs.md
index 7cd4012f..63b34aa6 100644
--- a/docs/tutorials/langchainjs.md
+++ b/docs/tutorials/langchainjs.md
@@ -15,7 +15,7 @@ import { Ollama } from "langchain/llms/ollama";
const ollama = new Ollama({
baseUrl: "http://localhost:11434",
- model: "llama2",
+ model: "llama3",
});
const answer = await ollama.invoke(`why is the sky blue?`);
@@ -23,10 +23,10 @@ const answer = await ollama.invoke(`why is the sky blue?`);
console.log(answer);
```
-That will get us the same thing as if we ran `ollama run llama2 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
+That will get us the same thing as if we ran `ollama run llama3 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
```bash
-npm install cheerio
+npm install cheerio
```
```javascript
diff --git a/docs/windows.md b/docs/windows.md
index 906dbfcc..17d72f42 100644
--- a/docs/windows.md
+++ b/docs/windows.md
@@ -1,3 +1,4 @@
+<<<<<<< HEAD
# Ollama Windows Preview
Welcome to the Ollama Windows preview.
@@ -27,7 +28,7 @@ Logs will often be helpful in diagnosing the problem (see
Here's a quick example showing API access from `powershell`
```powershell
-(Invoke-WebRequest -method POST -Body '{"model":"llama2", "prompt":"Why is the sky blue?", "stream": false}' -uri http://localhost:11434/api/generate ).Content | ConvertFrom-json
+(Invoke-WebRequest -method POST -Body '{"model":"llama3", "prompt":"Why is the sky blue?", "stream": false}' -uri http://localhost:11434/api/generate ).Content | ConvertFrom-json
```
## Troubleshooting
diff --git a/examples/bash-comparemodels/README.md b/examples/bash-comparemodels/README.md
index 91499255..65e66f1e 100644
--- a/examples/bash-comparemodels/README.md
+++ b/examples/bash-comparemodels/README.md
@@ -2,7 +2,7 @@
When calling `ollama`, you can pass it a file to run all the prompts in the file, one after the other:
-`ollama run llama2 < sourcequestions.txt`
+`ollama run llama3 < sourcequestions.txt`
This concept is used in the following example.
diff --git a/examples/go-chat/main.go b/examples/go-chat/main.go
index 83aaad3d..5266f03e 100644
--- a/examples/go-chat/main.go
+++ b/examples/go-chat/main.go
@@ -35,7 +35,7 @@ func main() {
ctx := context.Background()
req := &api.ChatRequest{
- Model: "llama2",
+ Model: "llama3",
Messages: messages,
}
diff --git a/examples/langchain-python-rag-document/main.py b/examples/langchain-python-rag-document/main.py
index b9f98c4e..3ed9499f 100644
--- a/examples/langchain-python-rag-document/main.py
+++ b/examples/langchain-python-rag-document/main.py
@@ -40,9 +40,9 @@ while True:
continue
# Prompt
- template = """Use the following pieces of context to answer the question at the end.
- If you don't know the answer, just say that you don't know, don't try to make up an answer.
- Use three sentences maximum and keep the answer as concise as possible.
+ template = """Use the following pieces of context to answer the question at the end.
+ If you don't know the answer, just say that you don't know, don't try to make up an answer.
+ Use three sentences maximum and keep the answer as concise as possible.
{context}
Question: {question}
Helpful Answer:"""
@@ -51,11 +51,11 @@ while True:
template=template,
)
- llm = Ollama(model="llama2:13b", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
+ llm = Ollama(model="llama3:8b", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
qa_chain = RetrievalQA.from_chain_type(
llm,
retriever=vectorstore.as_retriever(),
chain_type_kwargs={"prompt": QA_CHAIN_PROMPT},
)
- result = qa_chain({"query": query})
\ No newline at end of file
+ result = qa_chain({"query": query})
diff --git a/examples/langchain-python-simple/README.md b/examples/langchain-python-simple/README.md
index 3f401ca8..d4102dec 100644
--- a/examples/langchain-python-simple/README.md
+++ b/examples/langchain-python-simple/README.md
@@ -4,10 +4,10 @@ This example is a basic "hello world" of using LangChain with Ollama.
## Running the Example
-1. Ensure you have the `llama2` model installed:
+1. Ensure you have the `llama3` model installed:
```bash
- ollama pull llama2
+ ollama pull llama3
```
2. Install the Python Requirements.
@@ -21,4 +21,3 @@ This example is a basic "hello world" of using LangChain with Ollama.
```bash
python main.py
```
-
\ No newline at end of file
diff --git a/examples/langchain-python-simple/main.py b/examples/langchain-python-simple/main.py
index da696e00..7cb65286 100644
--- a/examples/langchain-python-simple/main.py
+++ b/examples/langchain-python-simple/main.py
@@ -1,6 +1,6 @@
from langchain.llms import Ollama
input = input("What is your question?")
-llm = Ollama(model="llama2")
+llm = Ollama(model="llama3")
res = llm.predict(input)
print (res)
diff --git a/examples/modelfile-mario/Modelfile b/examples/modelfile-mario/Modelfile
index 35c787fc..33d5952b 100644
--- a/examples/modelfile-mario/Modelfile
+++ b/examples/modelfile-mario/Modelfile
@@ -1,4 +1,4 @@
-FROM llama2
+FROM llama3
PARAMETER temperature 1
SYSTEM """
You are Mario from super mario bros, acting as an assistant.
diff --git a/examples/modelfile-mario/readme.md b/examples/modelfile-mario/readme.md
index 0d72dddc..e4f0d417 100644
--- a/examples/modelfile-mario/readme.md
+++ b/examples/modelfile-mario/readme.md
@@ -2,12 +2,12 @@
# Example character: Mario
-This example shows how to create a basic character using Llama2 as the base model.
+This example shows how to create a basic character using Llama3 as the base model.
To run this example:
1. Download the Modelfile
-2. `ollama pull llama2` to get the base model used in the model file.
+2. `ollama pull llama3` to get the base model used in the model file.
3. `ollama create NAME -f ./Modelfile`
4. `ollama run NAME`
@@ -18,7 +18,7 @@ Ask it some questions like "Who are you?" or "Is Peach in trouble again?"
What the model file looks like:
```
-FROM llama2
+FROM llama3
PARAMETER temperature 1
SYSTEM """
You are Mario from Super Mario Bros, acting as an assistant.
diff --git a/examples/python-json-datagenerator/predefinedschema.py b/examples/python-json-datagenerator/predefinedschema.py
index abc399c4..1fd54892 100644
--- a/examples/python-json-datagenerator/predefinedschema.py
+++ b/examples/python-json-datagenerator/predefinedschema.py
@@ -2,16 +2,16 @@ import requests
import json
import random
-model = "llama2"
+model = "llama3"
template = {
- "firstName": "",
- "lastName": "",
+ "firstName": "",
+ "lastName": "",
"address": {
- "street": "",
- "city": "",
- "state": "",
+ "street": "",
+ "city": "",
+ "state": "",
"zipCode": ""
- },
+ },
"phoneNumber": ""
}
diff --git a/examples/python-json-datagenerator/randomaddresses.py b/examples/python-json-datagenerator/randomaddresses.py
index 5f27448f..72b1fefb 100644
--- a/examples/python-json-datagenerator/randomaddresses.py
+++ b/examples/python-json-datagenerator/randomaddresses.py
@@ -12,7 +12,7 @@ countries = [
"France",
]
country = random.choice(countries)
-model = "llama2"
+model = "llama3"
prompt = f"generate one realistically believable sample data set of a persons first name, last name, address in {country}, and phone number. Do not use common names. Respond using JSON. Key names should have no backslashes, values should use plain ascii with no special characters."
diff --git a/examples/python-json-datagenerator/readme.md b/examples/python-json-datagenerator/readme.md
index 369fb2a5..88357044 100644
--- a/examples/python-json-datagenerator/readme.md
+++ b/examples/python-json-datagenerator/readme.md
@@ -6,10 +6,10 @@ There are two python scripts in this example. `randomaddresses.py` generates ran
## Running the Example
-1. Ensure you have the `llama2` model installed:
+1. Ensure you have the `llama3` model installed:
```bash
- ollama pull llama2
+ ollama pull llama3
```
2. Install the Python Requirements.
diff --git a/examples/python-simplechat/client.py b/examples/python-simplechat/client.py
index 768a2289..9ae99fb7 100644
--- a/examples/python-simplechat/client.py
+++ b/examples/python-simplechat/client.py
@@ -2,7 +2,7 @@ import json
import requests
# NOTE: ollama must be running for this to work, start the ollama app or run `ollama serve`
-model = "llama2" # TODO: update this for whatever model you wish to use
+model = "llama3" # TODO: update this for whatever model you wish to use
def chat(messages):
diff --git a/examples/python-simplechat/readme.md b/examples/python-simplechat/readme.md
index 204a8159..dd2576bc 100644
--- a/examples/python-simplechat/readme.md
+++ b/examples/python-simplechat/readme.md
@@ -4,10 +4,10 @@ The **chat** endpoint is one of two ways to generate text from an LLM with Ollam
## Running the Example
-1. Ensure you have the `llama2` model installed:
+1. Ensure you have the `llama3` model installed:
```bash
- ollama pull llama2
+ ollama pull llama3
```
2. Install the Python Requirements.
diff --git a/examples/typescript-mentors/README.md b/examples/typescript-mentors/README.md
index c3ce9c82..d3611a5e 100644
--- a/examples/typescript-mentors/README.md
+++ b/examples/typescript-mentors/README.md
@@ -4,10 +4,10 @@ This example demonstrates how one would create a set of 'mentors' you can have a
## Usage
-1. Add llama2 to have the mentors ask your questions:
+1. Add llama3 to have the mentors ask your questions:
```bash
- ollama pull llama2
+ ollama pull llama3
```
2. Install prerequisites:
diff --git a/examples/typescript-mentors/character-generator.ts b/examples/typescript-mentors/character-generator.ts
index 886eec67..dc5d2f5e 100644
--- a/examples/typescript-mentors/character-generator.ts
+++ b/examples/typescript-mentors/character-generator.ts
@@ -15,7 +15,7 @@ async function characterGenerator() {
ollama.setModel("stablebeluga2:70b-q4_K_M");
const bio = await ollama.generate(`create a bio of ${character} in a single long paragraph. Instead of saying '${character} is...' or '${character} was...' use language like 'You are...' or 'You were...'. Then create a paragraph describing the speaking mannerisms and style of ${character}. Don't include anything about how ${character} looked or what they sounded like, just focus on the words they said. Instead of saying '${character} would say...' use language like 'You should say...'. If you use quotes, always use single quotes instead of double quotes. If there are any specific words or phrases you used a lot, show how you used them. `);
- const thecontents = `FROM llama2\nSYSTEM """\n${bio.response.replace(/(\r\n|\n|\r)/gm, " ").replace('would', 'should')} All answers to questions should be related back to what you are most known for.\n"""`;
+ const thecontents = `FROM llama3\nSYSTEM """\n${bio.response.replace(/(\r\n|\n|\r)/gm, " ").replace('would', 'should')} All answers to questions should be related back to what you are most known for.\n"""`;
fs.writeFile(path.join(directory, 'Modelfile'), thecontents, (err: any) => {
if (err) throw err;
@@ -23,4 +23,4 @@ async function characterGenerator() {
});
}
-characterGenerator();
\ No newline at end of file
+characterGenerator();
diff --git a/examples/typescript-simplechat/client.ts b/examples/typescript-simplechat/client.ts
index 3e571ab6..a1e0eea3 100644
--- a/examples/typescript-simplechat/client.ts
+++ b/examples/typescript-simplechat/client.ts
@@ -1,6 +1,6 @@
import * as readline from "readline";
-const model = "llama2";
+const model = "llama3";
type Message = {
role: "assistant" | "user" | "system";
content: string;
@@ -74,4 +74,4 @@ async function main() {
}
-main();
\ No newline at end of file
+main();