Added to README

This commit is contained in:
Matt 2024-09-19 21:09:39 +01:00
parent 7965511b9e
commit a59776dcb9

154
README.md
View file

@ -38,11 +38,163 @@ docker run -e HIP_PATH=/opt/rocm/lib/ -e LD_LIBRARY_PATH=/opt/rocm/lib --device
```
But make sure to change the tag "0.3.10-rc1-2-g56318fb-dirty-rocm" to what gets built from your build process. This is shown in the last phase of the build where it exports the images.
Once running, test it out
The debug info that gets output should look something like:
```
docker run -e HIP_PATH=/opt/rocm/lib/ -e LD_LIBRARY_PATH=/opt/rocm/lib --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 11434:11434 --name ollama_gpu_2 ollama/release:3449201-rocm
2024/09/15 14:56:41 routes.go:1125: INFO server config env="map[CUDA_VISIBLE_DEVICES: GPU_DEVICE_ORDINAL: HIP_VISIBLE_DEVICES: HSA_OVERRIDE_GFX_VERSION: OLLAMA_DEBUG:false OLLAMA_FLASH_ATTENTION:false OLLAMA_GPU_OVERHEAD:0 OLLAMA_HOST:http://0.0.0.0:11434 OLLAMA_INTEL_GPU:false OLLAMA_KEEP_ALIVE:5m0s OLLAMA_LLM_LIBRARY: OLLAMA_LOAD_TIMEOUT:5m0s OLLAMA_MAX_LOADED_MODELS:0 OLLAMA_MAX_QUEUE:512 OLLAMA_MODELS:/root/.ollama/models OLLAMA_NOHISTORY:false OLLAMA_NOPRUNE:false OLLAMA_NUM_PARALLEL:0 OLLAMA_ORIGINS:[http://localhost https://localhost http://localhost:* https://localhost:* http://127.0.0.1 https://127.0.0.1 http://127.0.0.1:* https://127.0.0.1:* http://0.0.0.0 https://0.0.0.0 http://0.0.0.0:* https://0.0.0.0:* app://* file://* tauri://*] OLLAMA_RUNNERS_DIR: OLLAMA_SCHED_SPREAD:false OLLAMA_TMPDIR: ROCR_VISIBLE_DEVICES:]"
time=2024-09-15T14:56:41.304Z level=INFO source=images.go:753 msg="total blobs: 18"
time=2024-09-15T14:56:41.307Z level=INFO source=images.go:760 msg="total unused blobs removed: 0"
time=2024-09-15T14:56:41.307Z level=INFO source=routes.go:1172 msg="Listening on [::]:11434 (version 3449201)"
time=2024-09-15T14:56:41.308Z level=INFO source=payload.go:30 msg="extracting embedded files" dir=/tmp/ollama2706594826/runners
time=2024-09-15T14:56:51.283Z level=INFO source=payload.go:44 msg="Dynamic LLM libraries [cpu_avx cpu_avx2 cuda_v11 cuda_v12 rocm_v0 cpu]"
time=2024-09-15T14:56:51.283Z level=INFO source=gpu.go:200 msg="looking for compatible GPUs"
time=2024-09-15T14:56:51.296Z level=WARN source=amd_linux.go:59 msg="ollama recommends running the https://www.amd.com/en/support/linux-drivers" error="amdgpu version file missing: /sys/module/amdgpu/version stat /sys/module/amdgpu/version: no such file or directory"
time=2024-09-15T14:56:51.308Z level=INFO source=amd_linux.go:345 msg="amdgpu is supported" gpu=0 gpu_type=gfx803
time=2024-09-15T14:56:51.308Z level=INFO source=types.go:107 msg="inference compute" id=0 library=rocm variant="" compute=gfx803 driver=0.0 name=1002:67df total="8.0 GiB" available="8.0 GiB"
[GIN] 2024/09/15 - 14:57:20 | 200 | 46.11µs | 127.0.0.1 | HEAD "/"
[GIN] 2024/09/15 - 14:57:20 | 200 | 24.189203ms | 127.0.0.1 | POST "/api/show"
```
Once running, in another terminal window, test it out:
```
docker exec -it ollama_gpu ollama run llama3.1
```
Checkout the debug log again, should look something like:
```
time=2024-09-15T14:57:20.500Z level=INFO source=sched.go:715 msg="new model will fit in available VRAM in single GPU, loading" model=/root/.ollama/models/blobs/sha256-8eeb52dfb3bb9aefdf9d1ef24b3bdbcfbe82238798c4b918278320b6fcef18fe gpu=0 parallel=4 available=8584495104 required="6.2 GiB"
time=2024-09-15T14:57:20.500Z level=INFO source=server.go:101 msg="system memory" total="15.6 GiB" free="14.6 GiB" free_swap="46.5 GiB"
time=2024-09-15T14:57:20.500Z level=INFO source=memory.go:326 msg="offload to rocm" layers.requested=-1 layers.model=33 layers.offload=33 layers.split="" memory.available="[8.0 GiB]" memory.gpu_overhead="0 B" memory.required.full="6.2 GiB" memory.required.partial="6.2 GiB" memory.required.kv="1.0 GiB" memory.required.allocations="[6.2 GiB]" memory.weights.total="4.7 GiB" memory.weights.repeating="4.3 GiB" memory.weights.nonrepeating="411.0 MiB" memory.graph.full="560.0 MiB" memory.graph.partial="677.5 MiB"
time=2024-09-15T14:57:20.503Z level=INFO source=server.go:391 msg="starting llama server" cmd="/tmp/ollama2706594826/runners/rocm_v0/ollama_llama_server --model /root/.ollama/models/blobs/sha256-8eeb52dfb3bb9aefdf9d1ef24b3bdbcfbe82238798c4b918278320b6fcef18fe --ctx-size 8192 --batch-size 512 --embedding --log-disable --n-gpu-layers 33 --parallel 4 --port 43843"
time=2024-09-15T14:57:20.503Z level=INFO source=sched.go:450 msg="loaded runners" count=1
time=2024-09-15T14:57:20.503Z level=INFO source=server.go:590 msg="waiting for llama runner to start responding"
time=2024-09-15T14:57:20.503Z level=INFO source=server.go:624 msg="waiting for server to become available" status="llm server error"
INFO [main] build info | build=3661 commit="8962422b" tid="126494289312832" timestamp=1726412240
INFO [main] system info | n_threads=4 n_threads_batch=4 system_info="AVX = 1 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 0 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | " tid="126494289312832" timestamp=1726412240 total_threads=8
INFO [main] HTTP server listening | hostname="127.0.0.1" n_threads_http="7" port="43843" tid="126494289312832" timestamp=1726412240
llama_model_loader: loaded meta data with 29 key-value pairs and 292 tensors from /root/.ollama/models/blobs/sha256-8eeb52dfb3bb9aefdf9d1ef24b3bdbcfbe82238798c4b918278320b6fcef18fe (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Meta Llama 3.1 8B Instruct
llama_model_loader: - kv 3: general.finetune str = Instruct
llama_model_loader: - kv 4: general.basename str = Meta-Llama-3.1
llama_model_loader: - kv 5: general.size_label str = 8B
llama_model_loader: - kv 6: general.license str = llama3.1
llama_model_loader: - kv 7: general.tags arr[str,6] = ["facebook", "meta", "pytorch", "llam...
llama_model_loader: - kv 8: general.languages arr[str,8] = ["en", "de", "fr", "it", "pt", "hi", ...
llama_model_loader: - kv 9: llama.block_count u32 = 32
llama_model_loader: - kv 10: llama.context_length u32 = 131072
llama_model_loader: - kv 11: llama.embedding_length u32 = 4096
llama_model_loader: - kv 12: llama.feed_forward_length u32 = 14336
llama_model_loader: - kv 13: llama.attention.head_count u32 = 32
llama_model_loader: - kv 14: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 15: llama.rope.freq_base f32 = 500000.000000
llama_model_loader: - kv 16: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 17: general.file_type u32 = 2
llama_model_loader: - kv 18: llama.vocab_size u32 = 128256
llama_model_loader: - kv 19: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 20: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 21: tokenizer.ggml.pre str = llama-bpe
llama_model_loader: - kv 22: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 23: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
time=2024-09-15T14:57:21.006Z level=INFO source=server.go:624 msg="waiting for server to become available" status="llm server loading model"
llama_model_loader: - kv 24: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv 25: tokenizer.ggml.bos_token_id u32 = 128000
llama_model_loader: - kv 26: tokenizer.ggml.eos_token_id u32 = 128009
llama_model_loader: - kv 27: tokenizer.chat_template str = {{- bos_token }}\n{%- if custom_tools ...
llama_model_loader: - kv 28: general.quantization_version u32 = 2
llama_model_loader: - type f32: 66 tensors
llama_model_loader: - type q4_0: 225 tensors
llama_model_loader: - type q6_K: 1 tensors
llm_load_vocab: special tokens cache size = 256
llm_load_vocab: token to piece cache size = 0.7999 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 128256
llm_load_print_meta: n_merges = 280147
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 131072
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 8
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 4
llm_load_print_meta: n_embd_k_gqa = 1024
llm_load_print_meta: n_embd_v_gqa = 1024
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 14336
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 500000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 131072
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = 8B
llm_load_print_meta: model ftype = Q4_0
llm_load_print_meta: model params = 8.03 B
llm_load_print_meta: model size = 4.33 GiB (4.64 BPW)
llm_load_print_meta: general.name = Meta Llama 3.1 8B Instruct
llm_load_print_meta: BOS token = 128000 '<|begin_of_text|>'
llm_load_print_meta: EOS token = 128009 '<|eot_id|>'
llm_load_print_meta: LF token = 128 'Ä'
llm_load_print_meta: EOT token = 128009 '<|eot_id|>'
llm_load_print_meta: max token length = 256
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 ROCm devices:
Device 0: Radeon RX 580 Series, compute capability 8.0, VMM: no
llm_load_tensors: ggml ctx size = 0.27 MiB
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 33/33 layers to GPU
llm_load_tensors: ROCm0 buffer size = 4156.00 MiB
llm_load_tensors: CPU buffer size = 281.81 MiB
llama_new_context_with_model: n_ctx = 8192
llama_new_context_with_model: n_batch = 512
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 500000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: ROCm0 KV buffer size = 1024.00 MiB
llama_new_context_with_model: KV self size = 1024.00 MiB, K (f16): 512.00 MiB, V (f16): 512.00 MiB
llama_new_context_with_model: ROCm_Host output buffer size = 2.02 MiB
llama_new_context_with_model: ROCm0 compute buffer size = 560.00 MiB
llama_new_context_with_model: ROCm_Host compute buffer size = 24.01 MiB
llama_new_context_with_model: graph nodes = 1030
llama_new_context_with_model: graph splits = 2
INFO [main] model loaded | tid="126494289312832" timestamp=1726412253
time=2024-09-15T14:57:33.297Z level=INFO source=server.go:629 msg="llama runner started in 12.79 seconds"
[GIN] 2024/09/15 - 14:57:33 | 200 | 12.853561919s | 127.0.0.1 | POST "/api/chat"
[GIN] 2024/09/15 - 14:57:43 | 200 | 1.091025241s | 127.0.0.1 | POST "/api/chat"
```
Goog luck!
### macOS
[Download](https://ollama.com/download/Ollama-darwin.zip)