Updated FatFS, and new SD support... able to read directories

This commit is contained in:
Peter Weingartner 2024-07-08 16:56:37 -04:00
parent 153e905411
commit a5531fb1be
31 changed files with 3322 additions and 949 deletions

1
.gitignore vendored
View file

@ -51,3 +51,4 @@ Module.symvers
Mkfile.old
dkms.conf
.vscode/settings.json
/misc/F256xE_Kernal_Code

View file

@ -37,7 +37,7 @@ else ifeq ($(UNIT),F256)
AS=as65816
AR=nlib
SRCS_FOR_UNIT=txt_f256.c kbd_f256k.c indicators_c256.c interrupts_f256.c # timers_c256.c
SRCS_FOR_UNIT=txt_f256.c kbd_f256k.c indicators_c256.c interrupts_f256.c sdc_f256.c # timers_c256.c
CFLAGS_FOR_UNIT=-DMODEL=2 -DCPU=255 --code-model large --data-model large # --target Foenix
endif

View file

@ -9,6 +9,8 @@
#include "log.h"
#include "block.h"
#include "uart.h"
#include <stdio.h>
t_dev_block g_block_devs[BDEV_DEVICES_MAX];
@ -41,6 +43,7 @@ SYSTEMCALL short bdev_register(p_dev_block device) {
p_dev_block bdev = &g_block_devs[dev];
bdev->number = device->number;
bdev->name = device->name;
bdev->data = device->data;
bdev->init = device->init;
bdev->read = device->read;
bdev->write = device->write;
@ -71,8 +74,9 @@ short bdev_init(short dev) {
if (dev < BDEV_DEVICES_MAX) {
p_dev_block bdev = &g_block_devs[dev];
if (bdev->number == dev)
ret = bdev->init();
if (bdev->number == dev) {
ret = bdev->init(bdev);
}
}
TRACE1("bdev_init returning %d", (int)ret);
@ -99,7 +103,7 @@ SYSTEMCALL short bdev_read(short dev, long lba, unsigned char * buffer, short si
if (dev < BDEV_DEVICES_MAX) {
p_dev_block bdev = &g_block_devs[dev];
if (bdev->number == dev)
ret = bdev->read(lba, buffer, size);
ret = bdev->read(bdev, lba, buffer, size);
}
TRACE1("bdev_read returning %d", (int)ret);
@ -126,7 +130,7 @@ SYSTEMCALL short bdev_write(short dev, long lba, const unsigned char * buffer, s
if (dev < BDEV_DEVICES_MAX) {
p_dev_block bdev = &g_block_devs[dev];
if (bdev->number == dev)
ret = bdev->write(lba, buffer, size);
ret = bdev->write(bdev, lba, buffer, size);
}
TRACE1("bdev_write returning %d", (int)ret);
@ -150,7 +154,7 @@ SYSTEMCALL short bdev_status(short dev) {
if (dev < BDEV_DEVICES_MAX) {
p_dev_block bdev = &g_block_devs[dev];
if (bdev->number == dev)
ret = bdev->status();
ret = bdev->status(bdev);
}
TRACE1("bdev_status returning %d", (int)ret);
@ -174,7 +178,7 @@ SYSTEMCALL short bdev_flush(short dev) {
if (dev < BDEV_DEVICES_MAX) {
p_dev_block bdev = &g_block_devs[dev];
if (bdev->number == dev)
return bdev->flush();
return bdev->flush(bdev);
}
TRACE1("bdev_flush returning %d", (int)ret);
@ -201,7 +205,7 @@ SYSTEMCALL short bdev_ioctrl(short dev, short command, unsigned char * buffer, s
if (dev < BDEV_DEVICES_MAX) {
p_dev_block bdev = &g_block_devs[dev];
if (bdev->number == dev)
ret = bdev->ioctrl(command, buffer, size);
ret = bdev->ioctrl(bdev, command, buffer, size);
}
TRACE1("bdev_ioctrl returning %d", (int)ret);

View file

@ -6,6 +6,9 @@
*
*/
#include "log_level.h"
#define DEFAULT_LOG_LEVEL LOG_INFO
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
@ -239,6 +242,7 @@ SYSTEMCALL short fsys_opendir(const char * path) {
}
if (fres != FR_OK) {
/* If there was a problem, return an error number */
ERROR1("FATFS Error: %d", fres);
return fatfs_to_foenix(fres);
} else {
/* Otherwise, allocate and return the handle */
@ -827,8 +831,9 @@ short fsys_mount(short bdev) {
drive[2] = 0;
fres = f_mount(&g_drive[bdev], drive, 0);
INFO1("fsys_mount called f_mount: %d", fres);
if (fres != FR_OK) {
DEBUG1("Unable to mount drive: %s", drive);
ERROR2("Unable to mount drive %s, FatFS Error: %d", drive, fres);
return fatfs_to_foenix(fres);
} else {
return 0;
@ -1507,7 +1512,7 @@ short fsys_init() {
/* Set the default working directory.
* TODO: set this based on the boot drive.
*/
strcpy(g_current_directory, "/sd");
strcpy(g_current_directory, "/sd0");
/* Mark all directories as available */
for (i = 0; i < MAX_DIRECTORIES; i++) {
@ -1524,7 +1529,11 @@ short fsys_init() {
for (i = 0; i < MAX_DRIVES; i++) {
short res = sys_bdev_status((short)i);
if (res >= 0) {
fsys_mount(i);
INFO1("Mounting drive #%d", i);
short result = fsys_mount(i);
if (result < 0) {
ERROR2("Could not mount device %d: %d", i, result);
}
}
}

View file

@ -2,6 +2,9 @@
* Definitions for access the bq4802LY real time clock
*/
#include "log_level.h"
#define DEFAULT_LOG_LEVEL LOG_ERROR
#include "log.h"
#include "interrupt.h"
#include "gabe_reg.h"
@ -121,13 +124,13 @@ SYSTEMCALL void rtc_set_time(p_time time) {
minute_bcd = i_to_bcd(time->minute);
second_bcd = i_to_bcd(time->second);
log_num(LOG_INFO, "Century: ", century_bcd);
log_num(LOG_INFO, "Year: ", year_bcd);
log_num(LOG_INFO, "Month: ", month_bcd);
log_num(LOG_INFO, "Day: ", day_bcd);
log_num(LOG_INFO, "Hour: ", hour_bcd);
log_num(LOG_INFO, "Minute: ", minute_bcd);
log_num(LOG_INFO, "Second: ", second_bcd);
INFO1("Century: %02d", century_bcd);
INFO1("Year: %04d", year_bcd);
INFO1("Month: %02d", month_bcd);
INFO1("Day: %02d", day_bcd);
INFO1("Hour: %02d", hour_bcd);
INFO1("Minute: %02d", minute_bcd);
INFO1("Second: %02d", second_bcd);
if (!time->is_24hours) {
if (time->is_pm) {
@ -140,11 +143,11 @@ SYSTEMCALL void rtc_set_time(p_time time) {
/* Temporarily disable updates to the clock */
ctrl = *RTC_CTRL;
*RTC_CTRL = ctrl | RTC_UTI;
log(LOG_INFO, "RTC Disabled");
log_num(LOG_INFO, "RTC Rates: ", *RTC_RATES);
log_num(LOG_INFO, "RTC Enables: ", *RTC_ENABLES);
log_num(LOG_INFO, "RTC Flags: ", *RTC_FLAGS);
log_num(LOG_INFO, "RTC Control: ", *RTC_CTRL);
INFO("RTC Disabled");
INFO1("RTC Rates: %02x", *RTC_RATES);
INFO1("RTC Enables: %02x", *RTC_ENABLES);
INFO1("RTC Flags: %02x", *RTC_FLAGS);
INFO1("RTC Control: %02x", *RTC_CTRL);
/* Set the time in the RTC */
@ -165,13 +168,13 @@ SYSTEMCALL void rtc_set_time(p_time time) {
hour_bcd = *RTC_HOUR;
minute_bcd = *RTC_MIN;
second_bcd = *RTC_SEC;
log_num(LOG_INFO, "REG Century: ", century_bcd);
log_num(LOG_INFO, "REG Year: ", year_bcd);
log_num(LOG_INFO, "REG Month: ", month_bcd);
log_num(LOG_INFO, "REG Day: ", day_bcd);
log_num(LOG_INFO, "REG Hour: ", hour_bcd);
log_num(LOG_INFO, "REG Minute: ", minute_bcd);
log_num(LOG_INFO, "REG Second: ", second_bcd);
INFO1("REG Century: %02d", century_bcd);
INFO1("REG Year: %02d", year_bcd);
INFO1("REG Month: %02d", month_bcd);
INFO1("REG Day: %02d", day_bcd);
INFO1("REG Hour: %02d", hour_bcd);
INFO1("REG Minute: %02d", minute_bcd);
INFO1("REG Second: %02d", second_bcd);
/* Set the 24/12 hour control bit if needed */
if (time->is_24hours) {
@ -180,11 +183,11 @@ SYSTEMCALL void rtc_set_time(p_time time) {
/* Re-enable updates to the clock */
*RTC_CTRL = (ctrl & 0x07) | RTC_STOP;
log(LOG_INFO, "RTC Enabled");
log_num(LOG_INFO, "RTC Rates: ", *RTC_RATES);
log_num(LOG_INFO, "RTC Enables: ", *RTC_ENABLES);
log_num(LOG_INFO, "RTC Flags: ", *RTC_FLAGS);
log_num(LOG_INFO, "RTC Control: ", *RTC_CTRL);
INFO("RTC Enabled");
INFO1("RTC Rates: %02x", *RTC_RATES);
INFO1("RTC Enables: %02x", *RTC_ENABLES);
INFO1("RTC Flags: %02x", *RTC_FLAGS);
INFO1("RTC Control: %02x", *RTC_CTRL);
}
/*
@ -201,11 +204,11 @@ SYSTEMCALL void rtc_get_time(p_time time) {
/* Temporarily disable updates to the clock */
ctrl = *RTC_CTRL;
*RTC_CTRL = ctrl | RTC_UTI;
log(LOG_INFO, "RTC Disabled");
log_num(LOG_INFO, "RTC Rates: ", *RTC_RATES);
log_num(LOG_INFO, "RTC Enables: ", *RTC_ENABLES);
log_num(LOG_INFO, "RTC Flags: ", *RTC_FLAGS);
log_num(LOG_INFO, "RTC Control: ", *RTC_CTRL);
INFO("RTC Disabled");
INFO1("RTC Rates: %02x", *RTC_RATES);
INFO1("RTC Enables: %02x", *RTC_ENABLES);
INFO1("RTC Flags: %02x", *RTC_FLAGS);
INFO1("RTC Control: %02x", *RTC_CTRL);
if (*RTC_CTRL & RTC_2412) {
time->is_24hours = 1;
@ -223,19 +226,19 @@ SYSTEMCALL void rtc_get_time(p_time time) {
/* Re-enable updates to the clock */
*RTC_CTRL = (ctrl & 0x07) | RTC_STOP;
log(LOG_INFO, "RTC Enabled");
log_num(LOG_INFO, "RTC Rates: ", *RTC_RATES);
log_num(LOG_INFO, "RTC Enables: ", *RTC_ENABLES);
log_num(LOG_INFO, "RTC Flags: ", *RTC_FLAGS);
log_num(LOG_INFO, "RTC Control: ", *RTC_CTRL);
INFO("RTC Enabled");
INFO1("RTC Rates: %02x", *RTC_RATES);
INFO1("RTC Enables: %02x", *RTC_ENABLES);
INFO1("RTC Flags: %02x", *RTC_FLAGS);
INFO1("RTC Control: %02x", *RTC_CTRL);
log_num(LOG_INFO, "Century: ", century_bcd);
log_num(LOG_INFO, "Year: ", year_bcd);
log_num(LOG_INFO, "Month: ", month_bcd);
log_num(LOG_INFO, "Day: ", day_bcd);
log_num(LOG_INFO, "Hour: ", hour_bcd);
log_num(LOG_INFO, "Minute: ", minute_bcd);
log_num(LOG_INFO, "Second: ", second_bcd);
INFO1("Century: %02d", century_bcd);
INFO1("Year: %02d", year_bcd);
INFO1("Month: %02d", month_bcd);
INFO1("Day: %02d", day_bcd);
INFO1("Hour: %02d", hour_bcd);
INFO1("Minute: %02d", minute_bcd);
INFO1("Second: %02d", second_bcd);
/* Fill out the time record */

View file

@ -421,7 +421,7 @@ short sdc_ioctrl(short command, unsigned char * buffer, short size) {
short sdc_install() {
t_dev_block dev; // bdev_register copies the data, so we'll allocate this on the stack
TRACE("sdc_install");
INFO("old sdc_install");
/* Install an interrupt handler to catch insertion of a card */
int_register(INT_SDC_INS, sdc_handler);

570
src/dev/sdc_f256.c Normal file
View file

@ -0,0 +1,570 @@
/**
* @file sdc_f256.c
* @author your name (you@domain.com)
* @brief
* @version 0.1
* @date 2024-07-05
*
* @copyright Copyright (c) 2024
*
*/
#include <stdint.h>
#include "log_level.h"
#define DEFAULT_LOG_LEVEL LOG_ERROR
#include "log.h"
#include "constants.h"
#include "errors.h"
#include "dev/block.h"
#include "indicators.h"
#include "interrupt.h"
#include "F256/sdc_spi.h"
#include "sdc_f256.h"
/* MMC/SD command (SPI mode) */
#define CMD0 (0) /* GO_IDLE_STATE */
#define CMD1 (1) /* SEND_OP_COND */
#define ACMD41 (0x80+41) /* SEND_OP_COND (SDC) */
#define CMD8 (8) /* SEND_IF_COND */
#define CMD9 (9) /* SEND_CSD */
#define CMD10 (10) /* SEND_CID */
#define CMD12 (12) /* STOP_TRANSMISSION */
#define CMD13 (13) /* SEND_STATUS */
#define ACMD13 (0x80+13) /* SD_STATUS (SDC) */
#define CMD16 (16) /* SET_BLOCKLEN */
#define CMD17 (17) /* READ_SINGLE_BLOCK */
#define CMD18 (18) /* READ_MULTIPLE_BLOCK */
#define CMD23 (23) /* SET_BLOCK_COUNT */
#define ACMD23 (0x80+23) /* SET_WR_BLK_ERASE_COUNT (SDC) */
#define CMD24 (24) /* WRITE_BLOCK */
#define CMD25 (25) /* WRITE_MULTIPLE_BLOCK */
#define CMD32 (32) /* ERASE_ER_BLK_START */
#define CMD33 (33) /* ERASE_ER_BLK_END */
#define CMD38 (38) /* ERASE */
#define CMD55 (55) /* APP_CMD */
#define CMD58 (58) /* READ_OCR */
static t_sd_card_info sd0_card_info;
/**
* @brief Transmit Busy Flag Check
*
* @param sd pointer to the SPI device to check
*/
static void SD0_Wait_SDx_Busy(p_sdc_spi sd) {
uint8_t i = (sd->ctrl & SDx_BUSY);
do {
i = (sd->ctrl & SDx_BUSY);
} while (i == SDx_BUSY);
}
/**
* @brief Transmit bytes to the card
*
* @param sd pointer to the SPI device to write to
* @param buff buffer of data to write
* @param bc number of bytes to write
*/
static void SD0_Tx(p_sdc_spi sd, const uint8_t * buff, unsigned int bc) {
do {
uint8_t d = *buff++; // Get a byte to be sent
sd->data = d; // Set the Data in the Transmit Register
SD0_Wait_SDx_Busy(sd); // Wait for the transmit to be over with
} while (--bc);
}
/**
* @brief Receive bytes from the card
*
* @param sd pointer to the SPI device to read from
* @param buff buffer of data to read into
* @param bc number of bytes to read
*/
static void SD0_Rx(p_sdc_spi sd, uint8_t *buff, unsigned int bc) {
do {
sd->data = 0xff; // Set the Data in the Transmit Register
SD0_Wait_SDx_Busy(sd); // Wait for the transmit to be over with
*buff++ = sd->data; // Store a received byte
} while (--bc);
}
/* Delay n microseconds (avr-gcc -Os) */
static void dly_us (unsigned int n) {
do {
// Add Timer Routine for 1us (6x Clock @ 6.29Mhz)
__asm(" nop\n"
" nop\n"
" nop\n"
" nop\n"
" nop\n"
" nop\n");
} while (--n);
}
/*-----------------------------------------------------------------------*/
/* Wait for card ready Using - SPI Controler 0 */
/*-----------------------------------------------------------------------*/
/**
* @brief Wait for card ready Using
*
* @param sd pointer to the SPI device
* @return int
*/
static int SD0_wait_ready (p_sdc_spi sd) {
uint8_t d;
int tmr;
for (tmr = 5000; tmr; tmr--) { // Wait for ready in timeout of 500ms
SD0_Rx(sd, &d, 1);
if (d == 0xFF) break;
dly_us(100); // 100us
}
return tmr ? 1 : 0;
}
/**
* @brief Deselect the card and release SPI bus
*
* @param sd pointer to the SPI device
*/
static void SD0_deselect(p_sdc_spi sd) {
uint8_t d;
ind_set(IND_SDC, IND_OFF);
sd->ctrl = sd->ctrl & ~SDx_CS; // SDx_CS = 0 ( Disabled ), SDx = 1 (Active)
SD0_Rx(sd, &d, 1); // Dummy clock (force DO hi-z for multiple slave SPI)
}
/*-----------------------------------------------------------------------*/
/* Select the card and wait for ready - SPI Controler 0 */
/*-----------------------------------------------------------------------*/
/* */
/**
* @brief Select the card and wait for ready
*
* @param sd pointer to the SPI device
* @return int 1:OK, 0:Timeout
*/
static int SD0_select(p_sdc_spi sd) {
uint8_t d;
ind_set(IND_SDC, IND_ON);
sd->ctrl = sd->ctrl | SDx_CS; // SDx_CS = 0 ( Disabled ), SDx = 1 (Active)
SD0_Rx(sd, &d, 1); // Dummy clock (force DO enabled)
if (SD0_wait_ready(sd)) { // Wait for card ready
return 1;
}
SD0_deselect(sd);
return 0; // Failed
}
/**
* @brief Receive a data packet from the card
*
* @param sd pointer to the SPI device
* @param buff buffer of bytes to read into
* @param btr number of bytes to transfer
* @return int 1 on success, 0 on failure
*/
static int SD0_Rx_datablock (p_sdc_spi sd, uint8_t * buff, unsigned int btr) {
uint8_t d[2];
int tmr;
for (tmr = 1000; tmr; tmr--) { // Wait for data packet in timeout of 100ms
SD0_Rx(sd, d, 1);
if (d[0] != 0xFF) {
break;
}
dly_us(100); // 100us
}
if (d[0] != 0xFE) { // If not valid data token, return with error
return 0;
}
SD0_Rx(sd, buff, btr); // Receive the data block into buffer
SD0_Rx(sd, d, 2); // Discard CRC
return 1; // Return with success
}
/**
* @brief Send a data packet to the card
*
* @param sd pointer to the SPI device
* @param buff buffer of bytes to write to the card
* @param token token byte to transmit
* @return int 1 on success, 0 on failure
*/
static int SD0_Tx_datablock (p_sdc_spi sd, const uint8_t *buff, uint8_t token) {
uint8_t d[2];
if (!SD0_wait_ready(sd)) {
return 0;
}
d[0] = token;
SD0_Tx(sd, d, 1); // Xmit a token
if (token != 0xFD) { // Is it data token?
SD0_Tx(sd, buff, 512); // Xmit the 512 byte data block to MMC
SD0_Rx(sd, d, 2); // Xmit dummy CRC (0xFF,0xFF)
SD0_Rx(sd, d, 1); // Receive data response
if ((d[0] & 0x1F) != 0x05) { // If not accepted, return with error
return 0;
}
}
return 1;
}
/*-----------------------------------------------------------------------*/
/* Send a command packet to the card */
/*-----------------------------------------------------------------------*/
/* Returns command response (bit7==1:Send failed)*/
/**
* @brief Send a command packet to the card
*
* @param sd pointer to the SPI device
* @param cmd command to send
* @param arg
* @return uint8_t command response (bit7==1:Send failed)
*/
static uint8_t SD0_Tx_cmd (p_sdc_spi sd, uint8_t cmd, uint32_t arg) {
uint8_t n, d, buf[6];
if (cmd & 0x80) { /* ACMD<n> is the command sequense of CMD55-CMD<n> */
cmd &= 0x7F;
n = SD0_Tx_cmd(sd, CMD55, 0);
if (n > 1) {
return n;
}
}
/* Select the card and wait for ready except to stop multiple block read */
if (cmd != CMD12) {
SD0_deselect(sd);
if (!SD0_select(sd)) {
return 0xFF;
}
}
/* Send a command packet */
buf[0] = 0x40 | cmd; /* Start + Command index */
buf[1] = (uint8_t)(arg >> 24); /* Argument[31..24] */
buf[2] = (uint8_t)(arg >> 16); /* Argument[23..16] */
buf[3] = (uint8_t)(arg >> 8); /* Argument[15..8] */
buf[4] = (uint8_t)arg; /* Argument[7..0] */
n = 0x01; /* Dummy CRC + Stop */
if (cmd == CMD0) {
n = 0x95; /* (valid CRC for CMD0(0)) */
}
if (cmd == CMD8) {
n = 0x87; /* (valid CRC for CMD8(0x1AA)) */
}
buf[5] = n;
SD0_Tx(sd, buf, 6);
/* Receive command response */
if (cmd == CMD12)
SD0_Rx(sd, &d, 1); /* Skip a stuff byte when stop reading */
n = 10; /* Wait for a valid response in timeout of 10 attempts */
do {
SD0_Rx(sd, &d, 1);
} while ((d & 0x80) && --n);
return d; /* Return with the response value */
}
/**
* @brief pointer to the device driver structure for this device
*
* @param dev initialize the device
* @return short 0 for success, negative number for error
*/
static short sdc_init(p_dev_block dev) {
p_sd_card_info card = (p_sd_card_info)dev->data;
p_sdc_spi sd = card->reg;
uint8_t n, cmd, buf[4];
int tmr;
short s;
dly_us(10000); /* 10ms */
sd->ctrl |= SDx_SLOW; // Set the SPI in Slow Mode
for (n = 10; n; n--) {
SD0_Rx(sd, buf, 1); // Apply 80 dummy clocks and the card gets ready to receive command
}
card->type = 0;
if (SD0_Tx_cmd(sd, CMD0, 0) == 1) { /* Enter Idle state */
if (SD0_Tx_cmd(sd, CMD8, 0x1AA) == 1) { /* SDv2? */
SD0_Rx(sd, buf, 4); /* Get trailing return value of R7 resp */
if (buf[2] == 0x01 && buf[3] == 0xAA) { /* The card can work at vdd range of 2.7-3.6V */
for (tmr = 1000; tmr; tmr--) { /* Wait for leaving idle state (ACMD41 with HCS bit) */
if (SD0_Tx_cmd(sd, ACMD41, 1UL << 30) == 0) {
break;
}
dly_us(1000);
}
if (tmr && SD0_Tx_cmd(sd, CMD58, 0) == 0) { /* Check CCS bit in the OCR */
SD0_Rx(sd, buf, 4);
card->type = (buf[0] & 0x40) ? (CT_SDC2 | CT_BLOCK) : CT_SDC2; /* SDv2+ */
}
}
} else { /* SDv1 or MMCv3 */
if (SD0_Tx_cmd(sd, ACMD41, 0) <= 1) {
/* SDv1 */
card->type = CT_SDC2;
cmd = ACMD41;
} else {
/* MMCv3 */
card->type = CT_MMC3;
cmd = CMD1;
}
/* Wait for leaving idle state */
for (tmr = 1000; tmr; tmr--) {
if (SD0_Tx_cmd(sd, cmd, 0) == 0) {
break;
}
dly_us(1000);
}
/* Set R/W block length to 512 */
if (!tmr || SD0_Tx_cmd(sd, CMD16, 512) != 0) {
card->type = 0;
}
}
}
sd->ctrl &= ~SDx_SLOW; // Bring back the Fast Mode - 25Mhz
card->status = card->type ? 0 : SDC_STAT_NOINIT;
INFO1("SD0_CardType: %x", card->type);
INFO1("SD0_Stat: %x", card->status);
SD0_deselect(sd);
return card->status;
}
/**
* @brief Read a block from the device
*
* @param dev pointer to the device driver structure for this device
* @param lba the LBA number of the sector to read
* @param buffer buffer to write
* @param size number of bytes to try to read
* @return short the number of bytes read (negative number for error)
*/
static short sdc_read(p_dev_block dev, long lba, uint8_t * buffer, short size) {
p_sd_card_info card = (p_sd_card_info)dev->data;
p_sdc_spi sd = card->reg;
uint8_t cmd;
short count = size % 512 + 1;
if (card->status & SDC_STAT_NOINIT) {
return ERR_NOT_READY;
}
if (!(card->type & CT_BLOCK)) {
lba *= 512; /* Convert LBA to byte address if needed */
}
cmd = (count > 1) ? CMD18 : CMD17; /* READ_MULTIPLE_BLOCK : READ_SINGLE_BLOCK */
if (SD0_Tx_cmd(sd, cmd, (uint32_t)lba) == 0) {
do {
if (!SD0_Rx_datablock(sd, buffer, 512)) {
break;
}
buffer += 512;
} while (--count);
if (cmd == CMD18) {
SD0_Tx_cmd(sd, CMD12, 0); /* STOP_TRANSMISSION */
}
}
SD0_deselect(sd);
return size;
}
/**
* @brief Write a block to the device
*
* @param dev pointer to the device driver structure for this device
* @param lba the LBA number of the sector to write
* @param buffer buffer to read
* @param size number of bytes to try to write
* @return short the number of bytes write (negative number for error)
*/
static short sdc_write(p_dev_block dev, long lba, const uint8_t * buffer, short size) {
p_sd_card_info card = (p_sd_card_info)dev->data;
p_sdc_spi sd = card->reg;
uint8_t cmd;
short count = size % 512 + 1;
if (card->status & SDC_STAT_NOINIT) {
return ERR_NOT_READY;
}
if (!(card->type & CT_BLOCK)) {
/* Convert LBA to byte address if needed */
lba *= 512;
}
if (count == 1) {
/* Single block write */
if ((SD0_Tx_cmd(sd, CMD24, lba) == 0) && SD0_Tx_datablock(sd, buffer, 0xFE)) {
count = 0;
}
} else {
/* Multiple block write */
if (card->type & CT_SDC) {
SD0_Tx_cmd(sd, ACMD23, count);
}
if (SD0_Tx_cmd(sd, CMD25, lba) == 0) { /* WRITE_MULTIPLE_BLOCK */
do {
if (!SD0_Tx_datablock(sd, buffer, 0xFC)) {
break;
}
buffer += 512;
} while (--count);
if (!SD0_Tx_datablock(sd, 0, 0xFD)) {
/* STOP_TRAN token */
count = 1;
}
}
}
SD0_deselect(sd);
return size;
}
/**
* @brief Get the status of the device
*
* @param dev pointer to the device driver structure for this device
* @return short the status of the driver
*/
static short sdc_status(p_dev_block dev) {
p_sd_card_info card = (p_sd_card_info)dev->data;
return card->status;
}
/**
* @brief Ensure that any pending writes to teh device have been completed
*
* @param dev pointer to the device driver structure for this device
* @return 0 on success, negative number for error
*/
static short sdc_flush(p_dev_block dev) {
return 0;
}
/**
* @brief Issue a control command to the device
*
* @param dev pointer to the device driver structure for this device
* @param command
* @param buffer
* @param size
* @return short
*/
static short sdc_ioctrl(p_dev_block dev, short command, unsigned char * buffer, short size) {
p_sd_card_info card = (p_sd_card_info)dev->data;
p_sdc_spi sd = card->reg;
uint8_t n, csd[16];
uint32_t cs;
if (card->status & SDC_STAT_NOINIT) {
return ERR_NOT_READY; /* Check if card is in the socket */
}
short res = ERR_GENERAL;
switch (command) {
case IOCTRL_CTRL_SYNC:
/* Make sure that no pending write process */
if (SD0_select(sd)) {
res = 0;
}
break;
case IOCTRL_GET_SECTOR_COUNT:
/* Get number of sectors on the disk (DWORD) */
if ((SD0_Tx_cmd(sd, CMD9, 0) == 0) && SD0_Rx_datablock(sd, csd, 16)) {
if ((csd[0] >> 6) == 1) { /* SDC ver 2.00 */
cs = csd[9] + ((uint32_t)csd[8] << 8) + ((uint32_t)(csd[7] & 63) << 16) + 1;
*(uint32_t *)buffer = cs << 10;
} else { /* SDC ver 1.XX or MMC */
n = (csd[5] & 15) + ((csd[10] & 128) >> 7) + ((csd[9] & 3) << 1) + 2;
cs = (csd[8] >> 6) + ((uint16_t)csd[7] << 2) + ((uint16_t)(csd[6] & 3) << 10) + 1;
*(uint32_t*)buffer = cs << (n - 9);
}
res = 0;
}
break;
case IOCTRL_GET_SECTOR_SIZE:
/* Get erase block size in unit of sector (DWORD) */
*(uint32_t*)buffer = 128;
res = 0;
break;
default:
res = ERR_BAD_ARGUMENT;
}
SD0_deselect(sd);
return 0;
}
//
// Install the SDC driver
//
short sdc_install() {
t_dev_block dev; // bdev_register copies the data, so we'll allocate this on the stack
INFO("sdc_install");
/* Install an interrupt handler to catch insertion of a card */
// int_register(INT_SDC_INS, sdc_handler);
// int_enable(INT_SDC_INS);
sd0_card_info.reg = SD1_REG;
sd0_card_info.status = 0;
sd0_card_info.type = 0;
dev.number = BDEV_SD0;
dev.name = "SD0";
dev.data = &sd0_card_info;
dev.init = sdc_init;
dev.read = sdc_read;
dev.write = sdc_write;
dev.flush = sdc_flush;
dev.status = sdc_status;
dev.ioctrl = sdc_ioctrl;
return bdev_register(&dev);
}

41
src/dev/sdc_f256.h Normal file
View file

@ -0,0 +1,41 @@
/**
* Definitions support low level SDC device driver for the F256
*/
#ifndef __SDC_F256_H
#define __SDC_F256_H
#include "F256/sdc_spi.h"
#include "sys_types.h"
//
// Definitions for GABE's internal SD card controller
//
#define SDC_SECTOR_SIZE 512 // Size of a block on the SDC
#define SDC_STAT_NOINIT 0x01 // SD has not been initialized
#define SDC_STAT_PRESENT 0x02 // SD is present
#define SDC_STAT_PROTECTED 0x04 // SD is write-protected
/* MMC card type flags (MMC_GET_TYPE) */
#define CT_MMC3 0x01 /* MMC ver 3 */
#define CT_MMC4 0x02 /* MMC ver 4+ */
#define CT_MMC 0x03 /* MMC */
#define CT_SDC1 0x04 /* SD ver 1 */
#define CT_SDC2 0x08 /* SD ver 2+ */
#define CT_SDC 0x0C /* SD */
#define CT_BLOCK 0x10 /* Block addressing */
typedef struct s_sd_card_info {
p_sdc_spi reg;
uint8_t type;
uint8_t status;
} t_sd_card_info, *p_sd_card_info;
//
// Install the SDC driver
//
extern short sdc_install();
#endif

View file

@ -357,3 +357,13 @@ R0.14b (April 17, 2021)
Fixed some compiler warnings.
R0.15 (November 6, 2022)
Changed user provided synchronization functions in order to completely eliminate the platform dependency from FatFs code.
FF_SYNC_t is removed from the configuration options.
Fixed a potential error in f_mount when FF_FS_REENTRANT.
Fixed file lock control FF_FS_LOCK is not mutal excluded when FF_FS_REENTRANT && FF_VOLUMES > 1 is true.
Fixed f_mkfs() creates broken exFAT volume when the size of volume is >= 2^32 sectors.
Fixed string functions cannot write the unicode characters not in BMP when FF_LFN_UNICODE == 2 (UTF-8).
Fixed a compatibility issue in identification of GPT header.

View file

@ -1,4 +1,4 @@
FatFs Module Source Files R0.14b
FatFs Module Source Files R0.15
FILES

View file

@ -1,5 +1,5 @@
UNIT := C256U_PLUS
UNIT := F256
# Define OS-dependent variables
@ -13,19 +13,29 @@ endif
ifeq ($(UNIT),C256U)
CPU=w65816
SRCS_FOR_UNIT=
SRCS_FOR_UNIT=c256_diskio.c
CFLAGS_FOR_UNIT=-DMODEL=1 -DCPU=255 --target Foenix --code-model large --data-model large
LDFLAGS_FOR_UNIT=C256/ld_lc_c256_u.scm clib-lc-ld.a
else ifeq ($(UNIT),C256U_PLUS)
CPU=w65816
SRCS_FOR_UNIT=
SRCS_FOR_UNIT=c256_diskio.c
CFLAGS_FOR_UNIT=-DMODEL=5 -DCPU=255 --target Foenix --code-model large --data-model large
LDFLAGS_FOR_UNIT=C256/ld_lc_c256_fmx.scm clib-lc-ld.a --rtattr printf=medium
else ifeq ($(UNIT),C256_FMX)
CPU=w65816
SRCS_FOR_UNIT=
SRCS_FOR_UNIT=c256_diskio.c
CFLAGS_FOR_UNIT=-DMODEL=0 -DCPU=255 --target Foenix --code-model large --data-model large
LDFLAGS_FOR_UNIT=C256/ld_lc_c256_fmx.scm clib-lc-ld.a
else ifeq ($(UNIT),F256)
CPU=w65816
SRCS_FOR_UNIT=toolbox_bdev.c
CFLAGS_FOR_UNIT=-DMODEL=0 -DCPU=255 --code-model large --data-model large
ifeq ($(MEMORY),ROM)
LDFLAGS_FOR_UNIT=C256/flash-f256.scm clib-lc-ld.a --rtattr printf=medium
else
LDFLAGS_FOR_UNIT=C256/ld_lc_f256.scm clib-lc-ld.a --rtattr printf=medium
endif
endif
ifeq ($(CPU),w65816)
@ -39,7 +49,7 @@ INCLUDES=-I.. -I../include
CFLAGS=$(INCLUDES) $(CFLAGS_FOR_UNIT) -l
ASFLAGS=$(INCLUDES)
SRCS = c256_diskio.c ff.c ffsystem.c ffunicode.c $(SRCS_FOR_UNIT)
SRCS = ff.c ffsystem.c ffunicode.c $(SRCS_FOR_UNIT)
OBJS = $(patsubst %.c,%.o,$(SRCS))
OBJS4RM = $(subst /,\\,$(OBJS))

View file

@ -1,152 +0,0 @@
/*-----------------------------------------------------------------------*/
/* Low level disk I/O module SKELETON for FatFs (C)ChaN, 2019 */
/*-----------------------------------------------------------------------*/
/* If a working storage control module is available, it should be */
/* attached to the FatFs via a glue function rather than modifying it. */
/* This is an example of glue functions to attach various exsisting */
/* storage control modules to the FatFs module with a defined API. */
/*-----------------------------------------------------------------------*/
#include "log.h"
#include "dev/block.h"
#include "ff.h" /* Obtains integer types */
#include "diskio.h" /* Declarations of disk functions */
#include "simpleio.h"
/* Definitions of physical drive number for each drive */
#define DEV_SDC 0 /* Example: Map Ramdisk to physical drive 0 */
// #define DEV_FDC 1
// #define DEV_HDC 2
/*-----------------------------------------------------------------------*/
/* Get Drive Status */
/*-----------------------------------------------------------------------*/
DSTATUS disk_status (
BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{
DSTATUS stat;
int result;
TRACE("disk_status");
stat = bdev_status(pdrv);
return stat;
}
/*-----------------------------------------------------------------------*/
/* Initialize a Drive */
/*-----------------------------------------------------------------------*/
DSTATUS disk_initialize (
BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{
DSTATUS stat;
int result;
TRACE("disk_initialize");
return bdev_init(pdrv);
}
/*-----------------------------------------------------------------------*/
/* Read Sector(s) */
/*-----------------------------------------------------------------------*/
DRESULT disk_read (
BYTE pdrv, /* Physical drive nmuber to identify the drive */
BYTE *buff, /* Data buffer to store read data */
LBA_t sector, /* Start sector in LBA */
UINT count /* Number of sectors to read */
)
{
DRESULT res;
int result;
int i;
TRACE("disk_read");
for (i = 0; i < count; i++) {
result = bdev_read(pdrv, sector, buff, 512);
if (result < 0) {
log_num(LOG_ERROR, "disk_read error: ", result);
if (result == ERR_MEDIA_CHANGE) {
log(LOG_ERROR, "disk changed.");
return RES_NOTRDY;
} else {
log(LOG_ERROR, "gerneral error");
return RES_PARERR;
}
} else {
sector++;
}
}
return RES_OK;
}
/*-----------------------------------------------------------------------*/
/* Write Sector(s) */
/*-----------------------------------------------------------------------*/
#if FF_FS_READONLY == 0
DRESULT disk_write (
BYTE pdrv, /* Physical drive nmuber to identify the drive */
const BYTE *buff, /* Data to be written */
LBA_t sector, /* Start sector in LBA */
UINT count /* Number of sectors to write */
)
{
DRESULT res;
int i;
int result;
TRACE("disk_write");
for (i = 0; i < count; i++) {
result = bdev_write(pdrv, sector, buff, 512);
if (result < 0) {
return RES_PARERR;
} else {
sector += result;
}
}
return RES_OK;
}
#endif
/*-----------------------------------------------------------------------*/
/* Miscellaneous Functions */
/*-----------------------------------------------------------------------*/
DRESULT disk_ioctl (
BYTE pdrv, /* Physical drive nmuber (0..) */
BYTE cmd, /* Control code */
void *buff /* Buffer to send/receive control data */
)
{
DRESULT res;
int result;
TRACE("disk_ioctl");
result = bdev_ioctrl(pdrv, cmd, buff, 0);
if (result < 0) {
return RES_PARERR;
} else {
return RES_OK;
}
}

View file

@ -1,229 +0,0 @@
/*-----------------------------------------------------------------------*/
/* Low level disk I/O module SKELETON for FatFs (C)ChaN, 2019 */
/*-----------------------------------------------------------------------*/
/* If a working storage control module is available, it should be */
/* attached to the FatFs via a glue function rather than modifying it. */
/* This is an example of glue functions to attach various exsisting */
/* storage control modules to the FatFs module with a defined API. */
/*-----------------------------------------------------------------------*/
#include "ff.h" /* Obtains integer types */
#include "diskio.h" /* Declarations of disk functions */
/* Definitions of physical drive number for each drive */
#define DEV_RAM 0 /* Example: Map Ramdisk to physical drive 0 */
#define DEV_MMC 1 /* Example: Map MMC/SD card to physical drive 1 */
#define DEV_USB 2 /* Example: Map USB MSD to physical drive 2 */
/*-----------------------------------------------------------------------*/
/* Get Drive Status */
/*-----------------------------------------------------------------------*/
DSTATUS disk_status (
BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{
DSTATUS stat;
int result;
switch (pdrv) {
case DEV_RAM :
result = RAM_disk_status();
// translate the reslut code here
return stat;
case DEV_MMC :
result = MMC_disk_status();
// translate the reslut code here
return stat;
case DEV_USB :
result = USB_disk_status();
// translate the reslut code here
return stat;
}
return STA_NOINIT;
}
/*-----------------------------------------------------------------------*/
/* Inidialize a Drive */
/*-----------------------------------------------------------------------*/
DSTATUS disk_initialize (
BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{
DSTATUS stat;
int result;
switch (pdrv) {
case DEV_RAM :
result = RAM_disk_initialize();
// translate the reslut code here
return stat;
case DEV_MMC :
result = MMC_disk_initialize();
// translate the reslut code here
return stat;
case DEV_USB :
result = USB_disk_initialize();
// translate the reslut code here
return stat;
}
return STA_NOINIT;
}
/*-----------------------------------------------------------------------*/
/* Read Sector(s) */
/*-----------------------------------------------------------------------*/
DRESULT disk_read (
BYTE pdrv, /* Physical drive nmuber to identify the drive */
BYTE *buff, /* Data buffer to store read data */
LBA_t sector, /* Start sector in LBA */
UINT count /* Number of sectors to read */
)
{
DRESULT res;
int result;
switch (pdrv) {
case DEV_RAM :
// translate the arguments here
result = RAM_disk_read(buff, sector, count);
// translate the reslut code here
return res;
case DEV_MMC :
// translate the arguments here
result = MMC_disk_read(buff, sector, count);
// translate the reslut code here
return res;
case DEV_USB :
// translate the arguments here
result = USB_disk_read(buff, sector, count);
// translate the reslut code here
return res;
}
return RES_PARERR;
}
/*-----------------------------------------------------------------------*/
/* Write Sector(s) */
/*-----------------------------------------------------------------------*/
#if FF_FS_READONLY == 0
DRESULT disk_write (
BYTE pdrv, /* Physical drive nmuber to identify the drive */
const BYTE *buff, /* Data to be written */
LBA_t sector, /* Start sector in LBA */
UINT count /* Number of sectors to write */
)
{
DRESULT res;
int result;
switch (pdrv) {
case DEV_RAM :
// translate the arguments here
result = RAM_disk_write(buff, sector, count);
// translate the reslut code here
return res;
case DEV_MMC :
// translate the arguments here
result = MMC_disk_write(buff, sector, count);
// translate the reslut code here
return res;
case DEV_USB :
// translate the arguments here
result = USB_disk_write(buff, sector, count);
// translate the reslut code here
return res;
}
return RES_PARERR;
}
#endif
/*-----------------------------------------------------------------------*/
/* Miscellaneous Functions */
/*-----------------------------------------------------------------------*/
DRESULT disk_ioctl (
BYTE pdrv, /* Physical drive nmuber (0..) */
BYTE cmd, /* Control code */
void *buff /* Buffer to send/receive control data */
)
{
DRESULT res;
int result;
switch (pdrv) {
case DEV_RAM :
// Process of the command for the RAM drive
return res;
case DEV_MMC :
// Process of the command for the MMC/SD card
return res;
case DEV_USB :
// Process of the command the USB drive
return res;
}
return RES_PARERR;
}

832
src/fatfs/f256xe_diskio.c Normal file
View file

@ -0,0 +1,832 @@
/*------------------------------------------------------------------------/
/ Foolproof MMCv3/SDv1/SDv2 (in SPI mode) control module
/-------------------------------------------------------------------------/
/
/ Copyright (C) 2019, ChaN, all right reserved.
/
/ * This software is a free software and there is NO WARRANTY.
/ * No restriction on use. You can use, modify and redistribute it for
/ personal, non-profit or commercial products UNDER YOUR RESPONSIBILITY.
/ * Redistributions of source code must retain the above copyright notice.
/
/-------------------------------------------------------------------------/
Features and Limitations:
* Easy to Port Bit-banging SPI
It uses only four GPIO pins. No complex peripheral needs to be used.
* Platform Independent
You need to modify only a few macros to control the GPIO port.
* Low Speed
The data transfer rate will be several times slower than hardware SPI.
* No Media Change Detection
Application program needs to perform a f_mount() after media change.
/-------------------------------------------------------------------------*/
#include <stdio.h>
#include "ff.h" /* Obtains integer types for FatFs */
#include "f256xe_diskio.h" /* Common include file for FatFs and disk I/O layer */
#include "../dev/rtc.h"
/*-------------------------------------------------------------------------*/
/* Platform dependent macros and functions needed to be modified */
/*-------------------------------------------------------------------------*/
/* System Control Registers - to ger CD & WP from SD0 */
#define SD0_STAT (*(volatile __far uint8_t *)0xF016A0)
#define SD0_STAT_CD 0x40 // When 1 = No Card, 0 = Card is Present
#define SD0_STAT_WP 0x80 // When 0 = Writeable, 1 = Card is Protected
/* SPI Controler 0 Registers - External Access (Front of Unit)*/
#define SD0_CTRL (*(volatile __far uint8_t *)0xF01D00)
#define SD0_DATA (*(volatile __far uint8_t *)0xF01D01)
/* SPI Controler 1 Registers - Internal Access (underneath of Unit - uSDCard) */
// Specific to the F256xE - Internal SDCard (Permanent Disk)
#define SD1_CTRL (*(volatile __far uint8_t *)0xF01D80)
#define SD1_DATA (*(volatile __far uint8_t *)0xF01D81)
#define SDx_CS 0x01 // 1 = Enable
#define SDx_SLOW 0x02 // 1 = Slow 400Khz, 0 = 25Mhz
#define SDx_BUSY 0x80 // 1 = Busy
//
#define DEV_SD0 0 /* Frontal SDCard - Removable Media 0 - SDCARD */
#define DEV_SD1 1 /* Underneath SDCard - Permanent Media 1 - SDCARD */
//
/* MMC card type flags (MMC_GET_TYPE) */
#define CT_MMC3 0x01 /* MMC ver 3 */
#define CT_MMC4 0x02 /* MMC ver 4+ */
#define CT_MMC 0x03 /* MMC */
#define CT_SDC1 0x04 /* SD ver 1 */
#define CT_SDC2 0x08 /* SD ver 2+ */
#define CT_SDC 0x0C /* SD */
#define CT_BLOCK 0x10 /* Block addressing */
/* Delay n microseconds (avr-gcc -Os) */
static void dly_us (UINT n) {
do {
// Add Timer Routine for 1us (6x Clock @ 6.29Mhz)
__asm(" nop\n"
" nop\n"
" nop\n"
" nop\n"
" nop\n"
" nop\n");
} while (--n);
}
/*--------------------------------------------------------------------------
Module Private Functions
---------------------------------------------------------------------------*/
/* MMC/SD command (SPI mode) */
#define CMD0 (0) /* GO_IDLE_STATE */
#define CMD1 (1) /* SEND_OP_COND */
#define ACMD41 (0x80+41) /* SEND_OP_COND (SDC) */
#define CMD8 (8) /* SEND_IF_COND */
#define CMD9 (9) /* SEND_CSD */
#define CMD10 (10) /* SEND_CID */
#define CMD12 (12) /* STOP_TRANSMISSION */
#define CMD13 (13) /* SEND_STATUS */
#define ACMD13 (0x80+13) /* SD_STATUS (SDC) */
#define CMD16 (16) /* SET_BLOCKLEN */
#define CMD17 (17) /* READ_SINGLE_BLOCK */
#define CMD18 (18) /* READ_MULTIPLE_BLOCK */
#define CMD23 (23) /* SET_BLOCK_COUNT */
#define ACMD23 (0x80+23) /* SET_WR_BLK_ERASE_COUNT (SDC) */
#define CMD24 (24) /* WRITE_BLOCK */
#define CMD25 (25) /* WRITE_MULTIPLE_BLOCK */
#define CMD32 (32) /* ERASE_ER_BLK_START */
#define CMD33 (33) /* ERASE_ER_BLK_END */
#define CMD38 (38) /* ERASE */
#define CMD55 (55) /* APP_CMD */
#define CMD58 (58) /* READ_OCR */
static DSTATUS SD0_Stat = STA_NOINIT; /* Disk status */
static DSTATUS SD1_Stat = STA_NOINIT; /* Disk status */
static BYTE SD0_CardType; /* b0:MMC, b1:SDv1, b2:SDv2, b3:Block addressing */
static BYTE SD1_CardType; /* b0:MMC, b1:SDv1, b2:SDv2, b3:Block addressing */
/*-----------------------------------------------------------------------*/
/* Transmit Busy Flag Check - SPI Controler 0 */
/*-----------------------------------------------------------------------*/
static void SD0_Wait_SDx_Busy( void ) {
unsigned char i;
i = (SD0_CTRL & SDx_BUSY);
do {
i = (SD0_CTRL & SDx_BUSY);
} while (i == SDx_BUSY);
}
/*-----------------------------------------------------------------------*/
/* Transmit bytes to the card - SPI Controler 0 */
/*-----------------------------------------------------------------------*/
static void SD0_Tx ( const BYTE* buff, UINT bc ) {
BYTE d;
do {
d = *buff++; /* Get a byte to be sent */
SD0_DATA = d; // Set the Data in the Transmit Register
SD0_Wait_SDx_Busy(); // Wait for the transmit to be over with
} while (--bc);
}
/*-----------------------------------------------------------------------*/
/* Receive bytes from the card - SPI Controler 0 */
/*-----------------------------------------------------------------------*/
static void SD0_Rx ( BYTE *buff, UINT bc ) {
BYTE r;
do {
SD0_DATA = 0xff; // Set the Data in the Transmit Register
SD0_Wait_SDx_Busy(); // Wait for the transmit to be over with
*buff++ = SD0_DATA; /* Store a received byte */
} while (--bc);
}
/*-----------------------------------------------------------------------*/
/* Wait for card ready Using - SPI Controler 0 */
/*-----------------------------------------------------------------------*/
static int SD0_wait_ready (void) {
BYTE d;
UINT tmr;
for (tmr = 5000; tmr; tmr--) { /* Wait for ready in timeout of 500ms */
SD0_Rx(&d, 1);
if (d == 0xFF) break;
dly_us(100); // 100us
}
return tmr ? 1 : 0;
}
/*-----------------------------------------------------------------------*/
/* Deselect the card and release SPI bus - SPI Controler 0 */
/*-----------------------------------------------------------------------*/
static void SD0_deselect ( void ) {
BYTE d;
SD0_CTRL = SD0_CTRL & ~ SDx_CS; // SDx_CS = 0 ( Disabled ), SDx = 1 (Active)
SD0_Rx(&d, 1); /* Dummy clock (force DO hi-z for multiple slave SPI) */
}
/*-----------------------------------------------------------------------*/
/* Select the card and wait for ready - SPI Controler 0 */
/*-----------------------------------------------------------------------*/
/* 1:OK, 0:Timeout */
static int SD0_select (void) {
BYTE d;
SD0_CTRL = SD0_CTRL | SDx_CS; // SDx_CS = 0 ( Disabled ), SDx = 1 (Active)
SD0_Rx(&d, 1); /* Dummy clock (force DO enabled) */
if (SD0_wait_ready())
return 1; /* Wait for card ready */
SD0_deselect();
return 0; /* Failed */
}
/*-----------------------------------------------------------------------*/
/* Receive a data packet from the card - SPI Controler 0 */
/*-----------------------------------------------------------------------*/
/* 1:OK, 0:Failed */
static int SD0_Rx_datablock ( BYTE *buff, UINT btr ) {
BYTE d[2];
UINT tmr;
for (tmr = 1000; tmr; tmr--) { /* Wait for data packet in timeout of 100ms */
SD0_Rx(d, 1);
if (d[0] != 0xFF) break;
dly_us(100); // 100us
}
if (d[0] != 0xFE)
return 0; /* If not valid data token, return with error */
SD0_Rx(buff, btr); /* Receive the data block into buffer */
SD0_Rx(d, 2); /* Discard CRC */
return 1; /* Return with success */
}
/*-----------------------------------------------------------------------*/
/* Send a data packet to the card - SPI Controler 0 */
/*-----------------------------------------------------------------------*/
/* 1:OK, 0:Failed */
static int SD0_Tx_datablock ( const BYTE *buff, BYTE token ) {
BYTE d[2];
if (!SD0_wait_ready())
return 0;
d[0] = token;
SD0_Tx(d, 1); /* Xmit a token */
if (token != 0xFD) { /* Is it data token? */
SD0_Tx(buff, 512); /* Xmit the 512 byte data block to MMC */
SD0_Rx(d, 2); /* Xmit dummy CRC (0xFF,0xFF) */
SD0_Rx(d, 1); /* Receive data response */
if ((d[0] & 0x1F) != 0x05) /* If not accepted, return with error */
return 0;
}
return 1;
}
/*-----------------------------------------------------------------------*/
/* Send a command packet to the card */
/*-----------------------------------------------------------------------*/
/* Returns command response (bit7==1:Send failed)*/
static BYTE SD0_Tx_cmd ( BYTE cmd, DWORD arg ) {
BYTE n, d, buf[6];
//printf("Processing Command: %d\r", cmd);
if (cmd & 0x80) { /* ACMD<n> is the command sequense of CMD55-CMD<n> */
cmd &= 0x7F;
n = SD0_Tx_cmd(CMD55, 0);
if (n > 1)
return n;
}
/* Select the card and wait for ready except to stop multiple block read */
if (cmd != CMD12) {
//printf("Processing Command: %d\r", cmd);
SD0_deselect();
if (!SD0_select())
return 0xFF;
}
/* Send a command packet */
buf[0] = 0x40 | cmd; /* Start + Command index */
buf[1] = (BYTE)(arg >> 24); /* Argument[31..24] */
buf[2] = (BYTE)(arg >> 16); /* Argument[23..16] */
buf[3] = (BYTE)(arg >> 8); /* Argument[15..8] */
buf[4] = (BYTE)arg; /* Argument[7..0] */
n = 0x01; /* Dummy CRC + Stop */
if (cmd == CMD0)
n = 0x95; /* (valid CRC for CMD0(0)) */
if (cmd == CMD8)
n = 0x87; /* (valid CRC for CMD8(0x1AA)) */
buf[5] = n;
SD0_Tx(buf, 6);
/* Receive command response */
if (cmd == CMD12)
SD0_Rx(&d, 1); /* Skip a stuff byte when stop reading */
n = 10; /* Wait for a valid response in timeout of 10 attempts */
do
SD0_Rx(&d, 1);
while ((d & 0x80) && --n);
return d; /* Return with the response value */
}
/*-----------------------------------------------------------------------*/
/* Transmit bytes to the card - SPI Controler 1 */
/*-----------------------------------------------------------------------*/
static void SD1_Tx ( const BYTE* buff, UINT bc ) {
BYTE d;
do {
d = *buff++; /* Get a byte to be sent */
SD1_DATA = d; // Set the Data in the Transmit Register
while ( SD1_CTRL & SDx_BUSY); // Wait for the transmit to be over with
} while (--bc);
}
/*-----------------------------------------------------------------------*/
/* Receive bytes from the card - SPI Controler 1 */
/*-----------------------------------------------------------------------*/
static void SD1_Rx ( BYTE *buff, UINT bc ) {
BYTE r;
do {
SD1_DATA = 0xff; // Set the Data in the Transmit Register
while ( SD1_CTRL & SDx_BUSY); // Wait for the transmit to be over with
*buff++ = SD1_DATA; /* Store a received byte */
} while (--bc);
}
/*-----------------------------------------------------------------------*/
/* Wait for card ready Using - SPI Controler 1 */
/*-----------------------------------------------------------------------*/
static int SD1_wait_ready (void) {
BYTE d;
UINT tmr;
for (tmr = 5000; tmr; tmr--) { /* Wait for ready in timeout of 500ms */
SD1_Rx(&d, 1);
if (d == 0xFF) break;
dly_us(100); // 100us
}
return tmr ? 1 : 0;
}
/*-----------------------------------------------------------------------*/
/* Deselect the card and release SPI bus - SPI Controler 1 */
/*-----------------------------------------------------------------------*/
static void SD1_deselect ( void ) {
BYTE d;
SD1_CTRL = SD1_CTRL & ~ SDx_CS; // SDx_CS = 0 ( Disabled ), SDx = 1 (Active)
SD1_Rx(&d, 1); /* Dummy clock (force DO hi-z for multiple slave SPI) */
}
/*-----------------------------------------------------------------------*/
/* Select the card and wait for ready - SPI Controler 1 */
/*-----------------------------------------------------------------------*/
/* 1:OK, 0:Timeout */
static int SD1_select (void) {
BYTE d;
SD1_CTRL = SD1_CTRL | SDx_CS; // SDx_CS = 0 ( Disabled ), SDx = 1 (Active)
SD1_Rx(&d, 1); /* Dummy clock (force DO enabled) */
if (SD1_wait_ready())
return 1; /* Wait for card ready */
SD1_deselect();
return 0; /* Failed */
}
/*-----------------------------------------------------------------------*/
/* Receive a data packet from the card - SPI Controler 1 */
/*-----------------------------------------------------------------------*/
/* 1:OK, 0:Failed */
static int SD1_Rx_datablock ( BYTE *buff, UINT btr ) {
BYTE d[2];
UINT tmr;
for (tmr = 1000; tmr; tmr--) { /* Wait for data packet in timeout of 100ms */
SD1_Rx(d, 1);
if (d[0] != 0xFF) break;
dly_us(100); // 100us
}
if (d[0] != 0xFE)
return 0; /* If not valid data token, return with error */
SD1_Rx(buff, btr); /* Receive the data block into buffer */
SD1_Rx(d, 2); /* Discard CRC */
return 1; /* Return with success */
}
/*-----------------------------------------------------------------------*/
/* Send a data packet to the card - SPI Controler 1 */
/*-----------------------------------------------------------------------*/
/* 1:OK, 0:Failed */
static int SD1_Tx_datablock ( const BYTE *buff, BYTE token ) {
BYTE d[2];
if (!SD1_wait_ready())
return 0;
d[0] = token;
SD1_Tx(d, 1); /* Xmit a token */
if (token != 0xFD) { /* Is it data token? */
SD1_Tx(buff, 512); /* Xmit the 512 byte data block to MMC */
SD1_Rx(d, 2); /* Xmit dummy CRC (0xFF,0xFF) */
SD1_Rx(d, 1); /* Receive data response */
if ((d[0] & 0x1F) != 0x05) /* If not accepted, return with error */
return 0;
}
return 1;
}
/*-----------------------------------------------------------------------*/
/* Send a command packet to the card - SPI Controler 1 */
/*-----------------------------------------------------------------------*/
/* Returns command response (bit7==1:Send failed)*/
static BYTE SD1_Tx_cmd ( BYTE cmd, DWORD arg ) {
BYTE n, d, buf[6];
//printf("Processing Command: %d\r", cmd);
if (cmd & 0x80) { /* ACMD<n> is the command sequense of CMD55-CMD<n> */
cmd &= 0x7F;
n = SD1_Tx_cmd(CMD55, 0);
if (n > 1)
return n;
}
/* Select the card and wait for ready except to stop multiple block read */
if (cmd != CMD12) {
//printf("Enabling CSn for Command: %d\r", cmd);
SD1_deselect();
if (!SD1_select()) {
//printf("*** Enabling CSn Timed out ***\r");
return 0xFF;
}
}
/* Send a command packet */
buf[0] = 0x40 | cmd; /* Start + Command index */
buf[1] = (BYTE)(arg >> 24); /* Argument[31..24] */
buf[2] = (BYTE)(arg >> 16); /* Argument[23..16] */
buf[3] = (BYTE)(arg >> 8); /* Argument[15..8] */
buf[4] = (BYTE)arg; /* Argument[7..0] */
n = 0x01; /* Dummy CRC + Stop */
if (cmd == CMD0)
n = 0x95; /* (valid CRC for CMD0(0)) */
if (cmd == CMD8)
n = 0x87; /* (valid CRC for CMD8(0x1AA)) */
buf[5] = n;
SD1_Tx(buf, 6);
/* Receive command response */
if (cmd == CMD12)
SD1_Rx(&d, 1); /* Skip a stuff byte when stop reading */
n = 10; /* Wait for a valid response in timeout of 10 attempts */
do
SD1_Rx(&d, 1);
while ((d & 0x80) && --n);
return d; /* Return with the response value */
}
/*--------------------------------------------------------------------------
Public Functions
---------------------------------------------------------------------------*/
//#define SD0_STAT (*(volatile __far uint8_t *)0xF016A0)
//#define SD0_STAT_CD 0x40 // When 1 = No Card, 0 = Card is Present
//#define SD0_STAT_WP 0x80 // When 1 = Writeable, 0 = Card is Protected
/*-----------------------------------------------------------------------*/
/* Get Disk Status */
/*-----------------------------------------------------------------------*/
/* Drive number (always 0) */
DSTATUS disk_status ( BYTE drv ) {
if ( drv == DEV_SD0) {
// CHeck for Card Present
if ( SD0_STAT & SD0_STAT_CD )
SD0_Stat = SD0_Stat | STA_NODISK;
else
SD0_Stat = SD0_Stat & ~STA_NODISK;
if ( SD0_STAT & SD0_STAT_WP )
SD0_Stat = SD0_Stat | STA_PROTECT;
else
SD0_Stat = SD0_Stat & ~STA_PROTECT;
return SD0_Stat;
}
if ( drv == DEV_SD1) {
//printf("Drive: %d, disk_status: %x\r", drv, SD0_Stat);
return 0x00; // There is always a card in the drive
}
return STA_NOINIT;
}
/*-----------------------------------------------------------------------*/
/* Initialize Disk Drive */
/*-----------------------------------------------------------------------*/
DSTATUS disk_initialize (
BYTE drv /* Physical drive nmuber (0) */
)
{
BYTE n, ty, cmd, buf[4];
UINT tmr;
DSTATUS s;
if ( drv == DEV_SD0) {
//printf("Init Drive %d\r", drv);
dly_us(10000); /* 10ms */
SD0_CTRL = SD0_CTRL | SDx_SLOW; // Set the SPI in Slow Mode
for (n = 10; n; n--) {
SD0_Rx(buf, 1); /* Apply 80 dummy clocks and the card gets ready to receive command */
}
ty = 0;
if (SD0_Tx_cmd(CMD0, 0) == 1) { /* Enter Idle state */
if (SD0_Tx_cmd(CMD8, 0x1AA) == 1) { /* SDv2? */
SD0_Rx(buf, 4); /* Get trailing return value of R7 resp */
if (buf[2] == 0x01 && buf[3] == 0xAA) { /* The card can work at vdd range of 2.7-3.6V */
for (tmr = 1000; tmr; tmr--) { /* Wait for leaving idle state (ACMD41 with HCS bit) */
if (SD0_Tx_cmd(ACMD41, 1UL << 30) == 0) break;
dly_us(1000);
}
if (tmr && SD0_Tx_cmd(CMD58, 0) == 0) { /* Check CCS bit in the OCR */
SD0_Rx(buf, 4);
ty = (buf[0] & 0x40) ? CT_SDC2 | CT_BLOCK : CT_SDC2; /* SDv2+ */
}
}
} else { /* SDv1 or MMCv3 */
if (SD0_Tx_cmd(ACMD41, 0) <= 1) {
ty = CT_SDC2; cmd = ACMD41; /* SDv1 */
} else {
ty = CT_MMC3; cmd = CMD1; /* MMCv3 */
}
for (tmr = 1000; tmr; tmr--) { /* Wait for leaving idle state */
if (SD0_Tx_cmd(cmd, 0) == 0) break;
dly_us(1000);
}
if (!tmr || SD0_Tx_cmd(CMD16, 512) != 0) /* Set R/W block length to 512 */
ty = 0;
}
}
SD0_CTRL = SD0_CTRL & ~SDx_SLOW; // Bring back the Fast Mode - 25Mhz
SD0_CardType = ty;
s = ty ? 0 : STA_NOINIT;
SD0_Stat = s;
//printf("SD0_CardType: %x\r", ty);
//printf("SD0_Stat: %x\r", SD0_Stat);
SD0_deselect();
return s;
}
if ( drv == DEV_SD1) {
//printf("Initializing Internal Drive\r");
//printf("Init Drive %d\r", drv);
dly_us(10000); /* 10ms */
SD1_CTRL = SD1_CTRL | SDx_SLOW; // Set the SPI in Slow Mode
for (n = 10; n; n--) {
SD1_Rx(buf, 1); /* Apply 80 dummy clocks and the card gets ready to receive command */
}
ty = 0;
if (SD1_Tx_cmd(CMD0, 0) == 1) { /* Enter Idle state */
if (SD1_Tx_cmd(CMD8, 0x1AA) == 1) { /* SDv2? */
SD1_Rx(buf, 4); /* Get trailing return value of R7 resp */
if (buf[2] == 0x01 && buf[3] == 0xAA) { /* The card can work at vdd range of 2.7-3.6V */
for (tmr = 1000; tmr; tmr--) { /* Wait for leaving idle state (ACMD41 with HCS bit) */
if (SD1_Tx_cmd(ACMD41, 1UL << 30) == 0) break;
dly_us(1000);
}
if (tmr && SD1_Tx_cmd(CMD58, 0) == 0) { /* Check CCS bit in the OCR */
SD1_Rx(buf, 4);
ty = (buf[0] & 0x40) ? CT_SDC2 | CT_BLOCK : CT_SDC2; /* SDv2+ */
}
}
} else { /* SDv1 or MMCv3 */
if (SD1_Tx_cmd(ACMD41, 0) <= 1) {
ty = CT_SDC2; cmd = ACMD41; /* SDv1 */
} else {
ty = CT_MMC3; cmd = CMD1; /* MMCv3 */
}
for (tmr = 1000; tmr; tmr--) { /* Wait for leaving idle state */
if (SD1_Tx_cmd(cmd, 0) == 0) break;
dly_us(1000);
}
if (!tmr || SD1_Tx_cmd(CMD16, 512) != 0) /* Set R/W block length to 512 */
ty = 0;
}
}
SD1_CTRL = SD1_CTRL & ~SDx_SLOW; // Bring back the Fast Mode - 25Mhz
//printf("SD1_CardType: %x\r", ty);
SD1_CardType = ty;
s = ty ? 0 : STA_NOINIT;
SD1_Stat = s;
//printf("SD1_Status: %x\r", SD1_Stat);
SD1_deselect();
return s;
}
return RES_NOTRDY;
}
/*-----------------------------------------------------------------------*/
/* Read Sector(s) */
/*-----------------------------------------------------------------------*/
DRESULT disk_read ( BYTE drv, BYTE *buff, LBA_t sector, UINT count ) {
BYTE cmd;
DWORD sect = (DWORD)sector;
if ( drv == DEV_SD0) {
if (disk_status(drv) & STA_NOINIT)
return RES_NOTRDY;
if (!(SD0_CardType & CT_BLOCK))
sect *= 512; /* Convert LBA to byte address if needed */
cmd = count > 1 ? CMD18 : CMD17; /* READ_MULTIPLE_BLOCK : READ_SINGLE_BLOCK */
if (SD0_Tx_cmd(cmd, sect) == 0) {
do {
if (!SD0_Rx_datablock(buff, 512))
break;
buff += 512;
} while (--count);
if (cmd == CMD18)
SD0_Tx_cmd(CMD12, 0); /* STOP_TRANSMISSION */
}
SD0_deselect();
}
if ( drv == DEV_SD1) {
if (disk_status(drv) & STA_NOINIT)
return RES_NOTRDY;
if (!(SD1_CardType & CT_BLOCK))
sect *= 512; /* Convert LBA to byte address if needed */
cmd = count > 1 ? CMD18 : CMD17; /* READ_MULTIPLE_BLOCK : READ_SINGLE_BLOCK */
if (SD1_Tx_cmd(cmd, sect) == 0) {
do {
if (!SD1_Rx_datablock(buff, 512))
break;
buff += 512;
} while (--count);
if (cmd == CMD18)
SD1_Tx_cmd(CMD12, 0); /* STOP_TRANSMISSION */
}
SD1_deselect();
}
return count ? RES_ERROR : RES_OK;
}
/*-----------------------------------------------------------------------*/
/* Write Sector(s) */
/*-----------------------------------------------------------------------*/
//DRESULT disk_write (
// BYTE drv, /* Physical drive nmuber (0) */
// const BYTE *buff, /* Pointer to the data to be written */
// LBA_t sector, /* Start sector number (LBA) */
// UINT count /* Sector count (1..128) */
//)
DRESULT disk_write ( BYTE drv, const BYTE *buff, LBA_t sector, UINT count ) {
DWORD sect = (DWORD)sector;
if ( drv == DEV_SD0) {
if (disk_status(drv) & STA_NOINIT)
return RES_NOTRDY;
if (!(SD0_CardType & CT_BLOCK)) sect *= 512; /* Convert LBA to byte address if needed */
if (count == 1) { /* Single block write */
if ((SD0_Tx_cmd(CMD24, sect) == 0) && SD0_Tx_datablock(buff, 0xFE))
count = 0;
}
else { /* Multiple block write */
if (SD0_CardType & CT_SDC)
SD0_Tx_cmd(ACMD23, count);
if (SD0_Tx_cmd(CMD25, sect) == 0) { /* WRITE_MULTIPLE_BLOCK */
do {
if (!SD0_Tx_datablock(buff, 0xFC))
break;
buff += 512;
} while (--count);
if (!SD0_Tx_datablock(0, 0xFD)) /* STOP_TRAN token */
count = 1;
}
}
SD0_deselect();
}
if ( drv == DEV_SD1) {
if (disk_status(drv) & STA_NOINIT)
return RES_NOTRDY;
if (!(SD1_CardType & CT_BLOCK)) sect *= 512; /* Convert LBA to byte address if needed */
if (count == 1) { /* Single block write */
if ((SD1_Tx_cmd(CMD24, sect) == 0) && SD1_Tx_datablock(buff, 0xFE))
count = 0;
}
else { /* Multiple block write */
if (SD1_CardType & CT_SDC)
SD1_Tx_cmd(ACMD23, count);
if (SD1_Tx_cmd(CMD25, sect) == 0) { /* WRITE_MULTIPLE_BLOCK */
do {
if (!SD1_Tx_datablock(buff, 0xFC))
break;
buff += 512;
} while (--count);
if (!SD1_Tx_datablock(0, 0xFD)) /* STOP_TRAN token */
count = 1;
}
}
SD1_deselect();
}
return count ? RES_ERROR : RES_OK;
}
/*-----------------------------------------------------------------------*/
/* Miscellaneous Functions */
/*-----------------------------------------------------------------------*/
//DRESULT disk_ioctl (
// BYTE drv, /* Physical drive nmuber (0) */
// BYTE ctrl, /* Control code */
// void *buff /* Buffer to send/receive control data */
//)
DRESULT disk_ioctl ( BYTE drv, BYTE ctrl, void *buff ) {
DRESULT res;
BYTE n, csd[16];
DWORD cs;
if ( drv == DEV_SD0) {
if (disk_status(drv) & STA_NOINIT)
return RES_NOTRDY; /* Check if card is in the socket */
res = RES_ERROR;
switch (ctrl) {
case CTRL_SYNC : /* Make sure that no pending write process */
if (SD0_select())
res = RES_OK;
break;
case GET_SECTOR_COUNT : /* Get number of sectors on the disk (DWORD) */
if ((SD0_Tx_cmd(CMD9, 0) == 0) && SD0_Rx_datablock(csd, 16)) {
if ((csd[0] >> 6) == 1) { /* SDC ver 2.00 */
cs = csd[9] + ((WORD)csd[8] << 8) + ((DWORD)(csd[7] & 63) << 16) + 1;
*(LBA_t*)buff = cs << 10;
}
else { /* SDC ver 1.XX or MMC */
n = (csd[5] & 15) + ((csd[10] & 128) >> 7) + ((csd[9] & 3) << 1) + 2;
cs = (csd[8] >> 6) + ((WORD)csd[7] << 2) + ((WORD)(csd[6] & 3) << 10) + 1;
*(LBA_t*)buff = cs << (n - 9);
}
res = RES_OK;
}
break;
case GET_BLOCK_SIZE : /* Get erase block size in unit of sector (DWORD) */
*(DWORD*)buff = 128;
res = RES_OK;
break;
default:
res = RES_PARERR;
}
SD0_deselect();
}
if ( drv == DEV_SD1) {
if (disk_status(drv) & STA_NOINIT)
return RES_NOTRDY; /* Check if card is in the socket */
res = RES_ERROR;
switch (ctrl) {
case CTRL_SYNC : /* Make sure that no pending write process */
if (SD1_select())
res = RES_OK;
break;
case GET_SECTOR_COUNT : /* Get number of sectors on the disk (DWORD) */
if ((SD1_Tx_cmd(CMD9, 0) == 0) && SD1_Rx_datablock(csd, 16)) {
if ((csd[0] >> 6) == 1) { /* SDC ver 2.00 */
cs = csd[9] + ((WORD)csd[8] << 8) + ((DWORD)(csd[7] & 63) << 16) + 1;
*(LBA_t*)buff = cs << 10;
}
else { /* SDC ver 1.XX or MMC */
n = (csd[5] & 15) + ((csd[10] & 128) >> 7) + ((csd[9] & 3) << 1) + 2;
cs = (csd[8] >> 6) + ((WORD)csd[7] << 2) + ((WORD)(csd[6] & 3) << 10) + 1;
*(LBA_t*)buff = cs << (n - 9);
}
res = RES_OK;
}
break;
case GET_BLOCK_SIZE : /* Get erase block size in unit of sector (DWORD) */
*(DWORD*)buff = 128;
res = RES_OK;
break;
default:
res = RES_PARERR;
}
SD1_deselect();
}
return res;
}
DWORD get_fattime (void)
{
t_time time;
rtc_get_time(&time);
return (DWORD)(time.year - 80) << 25 |
(DWORD)(time.month + 1) << 21 |
(DWORD)time.day << 16 |
(DWORD)time.hour << 11 |
(DWORD)time.minute << 5 |
(DWORD)time.second >> 1;
}

View file

@ -0,0 +1,548 @@
/**
******************************************************************************
* @file user_diskio_spi.c
* @brief This file contains the implementation of the user_diskio_spi FatFs
* driver.
******************************************************************************
* Portions copyright (C) 2014, ChaN, all rights reserved.
* Portions copyright (C) 2017, kiwih, all rights reserved.
*
* This software is a free software and there is NO WARRANTY.
* No restriction on use. You can use, modify and redistribute it for
* personal, non-profit or commercial products UNDER YOUR RESPONSIBILITY.
* Redistributions of source code must retain the above copyright notice.
*
******************************************************************************
*/
//This code was ported by kiwih from a copywrited (C) library written by ChaN
//available at http://elm-chan.org/fsw/ff/ffsample.zip
//(text at http://elm-chan.org/fsw/ff/00index_e.html)
//This file provides the FatFs driver functions and SPI code required to manage
//an SPI-connected MMC or compatible SD card with FAT
//It is designed to be wrapped by a cubemx generated user_diskio.c file.
#include "stm32f3xx_hal.h" /* Provide the low-level HAL functions */
#include "user_diskio_spi.h"
//Make sure you set #define SD_SPI_HANDLE as some hspix in main.h
//Make sure you set #define SD_CS_GPIO_Port as some GPIO port in main.h
//Make sure you set #define SD_CS_Pin as some GPIO pin in main.h
extern SPI_HandleTypeDef SD_SPI_HANDLE;
/* Function prototypes */
//(Note that the _256 is used as a mask to clear the prescalar bits as it provides binary 111 in the correct position)
#define FCLK_SLOW() { MODIFY_REG(SD_SPI_HANDLE.Instance->CR1, SPI_BAUDRATEPRESCALER_256, SPI_BAUDRATEPRESCALER_128); } /* Set SCLK = slow, approx 280 KBits/s*/
#define FCLK_FAST() { MODIFY_REG(SD_SPI_HANDLE.Instance->CR1, SPI_BAUDRATEPRESCALER_256, SPI_BAUDRATEPRESCALER_8); } /* Set SCLK = fast, approx 4.5 MBits/s */
#define CS_HIGH() {HAL_GPIO_WritePin(SD_CS_GPIO_Port, SD_CS_Pin, GPIO_PIN_SET);}
#define CS_LOW() {HAL_GPIO_WritePin(SD_CS_GPIO_Port, SD_CS_Pin, GPIO_PIN_RESET);}
/*--------------------------------------------------------------------------
Module Private Functions
---------------------------------------------------------------------------*/
/* MMC/SD command */
#define CMD0 (0) /* GO_IDLE_STATE */
#define CMD1 (1) /* SEND_OP_COND (MMC) */
#define ACMD41 (0x80+41) /* SEND_OP_COND (SDC) */
#define CMD8 (8) /* SEND_IF_COND */
#define CMD9 (9) /* SEND_CSD */
#define CMD10 (10) /* SEND_CID */
#define CMD12 (12) /* STOP_TRANSMISSION */
#define ACMD13 (0x80+13) /* SD_STATUS (SDC) */
#define CMD16 (16) /* SET_BLOCKLEN */
#define CMD17 (17) /* READ_SINGLE_BLOCK */
#define CMD18 (18) /* READ_MULTIPLE_BLOCK */
#define CMD23 (23) /* SET_BLOCK_COUNT (MMC) */
#define ACMD23 (0x80+23) /* SET_WR_BLK_ERASE_COUNT (SDC) */
#define CMD24 (24) /* WRITE_BLOCK */
#define CMD25 (25) /* WRITE_MULTIPLE_BLOCK */
#define CMD32 (32) /* ERASE_ER_BLK_START */
#define CMD33 (33) /* ERASE_ER_BLK_END */
#define CMD38 (38) /* ERASE */
#define CMD55 (55) /* APP_CMD */
#define CMD58 (58) /* READ_OCR */
/* MMC card type flags (MMC_GET_TYPE) */
#define CT_MMC 0x01 /* MMC ver 3 */
#define CT_SD1 0x02 /* SD ver 1 */
#define CT_SD2 0x04 /* SD ver 2 */
#define CT_SDC (CT_SD1|CT_SD2) /* SD */
#define CT_BLOCK 0x08 /* Block addressing */
static volatile
DSTATUS Stat = STA_NOINIT; /* Physical drive status */
static
BYTE CardType; /* Card type flags */
uint32_t spiTimerTickStart;
uint32_t spiTimerTickDelay;
void SPI_Timer_On(uint32_t waitTicks) {
spiTimerTickStart = HAL_GetTick();
spiTimerTickDelay = waitTicks;
}
uint8_t SPI_Timer_Status() {
return ((HAL_GetTick() - spiTimerTickStart) < spiTimerTickDelay);
}
/*-----------------------------------------------------------------------*/
/* SPI controls (Platform dependent) */
/*-----------------------------------------------------------------------*/
/* Exchange a byte */
static
BYTE xchg_spi (
BYTE dat /* Data to send */
)
{
BYTE rxDat;
HAL_SPI_TransmitReceive(&SD_SPI_HANDLE, &dat, &rxDat, 1, 50);
return rxDat;
}
/* Receive multiple byte */
static
void rcvr_spi_multi (
BYTE *buff, /* Pointer to data buffer */
UINT btr /* Number of bytes to receive (even number) */
)
{
for(UINT i=0; i<btr; i++) {
*(buff+i) = xchg_spi(0xFF);
}
}
#if _USE_WRITE
/* Send multiple byte */
static
void xmit_spi_multi (
const BYTE *buff, /* Pointer to the data */
UINT btx /* Number of bytes to send (even number) */
)
{
HAL_SPI_Transmit(&SD_SPI_HANDLE, buff, btx, HAL_MAX_DELAY);
}
#endif
/*-----------------------------------------------------------------------*/
/* Wait for card ready */
/*-----------------------------------------------------------------------*/
static
int wait_ready ( /* 1:Ready, 0:Timeout */
UINT wt /* Timeout [ms] */
)
{
BYTE d;
//wait_ready needs its own timer, unfortunately, so it can't use the
//spi_timer functions
uint32_t waitSpiTimerTickStart;
uint32_t waitSpiTimerTickDelay;
waitSpiTimerTickStart = HAL_GetTick();
waitSpiTimerTickDelay = (uint32_t)wt;
do {
d = xchg_spi(0xFF);
/* This loop takes a time. Insert rot_rdq() here for multitask envilonment. */
} while (d != 0xFF && ((HAL_GetTick() - waitSpiTimerTickStart) < waitSpiTimerTickDelay)); /* Wait for card goes ready or timeout */
return (d == 0xFF) ? 1 : 0;
}
/*-----------------------------------------------------------------------*/
/* Despiselect card and release SPI */
/*-----------------------------------------------------------------------*/
static
void despiselect (void)
{
CS_HIGH(); /* Set CS# high */
xchg_spi(0xFF); /* Dummy clock (force DO hi-z for multiple slave SPI) */
}
/*-----------------------------------------------------------------------*/
/* Select card and wait for ready */
/*-----------------------------------------------------------------------*/
static
int spiselect (void) /* 1:OK, 0:Timeout */
{
CS_LOW(); /* Set CS# low */
xchg_spi(0xFF); /* Dummy clock (force DO enabled) */
if (wait_ready(500)) return 1; /* Wait for card ready */
despiselect();
return 0; /* Timeout */
}
/*-----------------------------------------------------------------------*/
/* Receive a data packet from the MMC */
/*-----------------------------------------------------------------------*/
static
int rcvr_datablock ( /* 1:OK, 0:Error */
BYTE *buff, /* Data buffer */
UINT btr /* Data block length (byte) */
)
{
BYTE token;
SPI_Timer_On(200);
do { /* Wait for DataStart token in timeout of 200ms */
token = xchg_spi(0xFF);
/* This loop will take a time. Insert rot_rdq() here for multitask envilonment. */
} while ((token == 0xFF) && SPI_Timer_Status());
if(token != 0xFE) return 0; /* Function fails if invalid DataStart token or timeout */
rcvr_spi_multi(buff, btr); /* Store trailing data to the buffer */
xchg_spi(0xFF); xchg_spi(0xFF); /* Discard CRC */
return 1; /* Function succeeded */
}
/*-----------------------------------------------------------------------*/
/* Send a data packet to the MMC */
/*-----------------------------------------------------------------------*/
#if _USE_WRITE
static
int xmit_datablock ( /* 1:OK, 0:Failed */
const BYTE *buff, /* Ponter to 512 byte data to be sent */
BYTE token /* Token */
)
{
BYTE resp;
if (!wait_ready(500)) return 0; /* Wait for card ready */
xchg_spi(token); /* Send token */
if (token != 0xFD) { /* Send data if token is other than StopTran */
xmit_spi_multi(buff, 512); /* Data */
xchg_spi(0xFF); xchg_spi(0xFF); /* Dummy CRC */
resp = xchg_spi(0xFF); /* Receive data resp */
if ((resp & 0x1F) != 0x05) return 0; /* Function fails if the data packet was not accepted */
}
return 1;
}
#endif
/*-----------------------------------------------------------------------*/
/* Send a command packet to the MMC */
/*-----------------------------------------------------------------------*/
static
BYTE send_cmd ( /* Return value: R1 resp (bit7==1:Failed to send) */
BYTE cmd, /* Command index */
DWORD arg /* Argument */
)
{
BYTE n, res;
if (cmd & 0x80) { /* Send a CMD55 prior to ACMD<n> */
cmd &= 0x7F;
res = send_cmd(CMD55, 0);
if (res > 1) return res;
}
/* Select the card and wait for ready except to stop multiple block read */
if (cmd != CMD12) {
despiselect();
if (!spiselect()) return 0xFF;
}
/* Send command packet */
xchg_spi(0x40 | cmd); /* Start + command index */
xchg_spi((BYTE)(arg >> 24)); /* Argument[31..24] */
xchg_spi((BYTE)(arg >> 16)); /* Argument[23..16] */
xchg_spi((BYTE)(arg >> 8)); /* Argument[15..8] */
xchg_spi((BYTE)arg); /* Argument[7..0] */
n = 0x01; /* Dummy CRC + Stop */
if (cmd == CMD0) n = 0x95; /* Valid CRC for CMD0(0) */
if (cmd == CMD8) n = 0x87; /* Valid CRC for CMD8(0x1AA) */
xchg_spi(n);
/* Receive command resp */
if (cmd == CMD12) xchg_spi(0xFF); /* Diacard following one byte when CMD12 */
n = 10; /* Wait for response (10 bytes max) */
do {
res = xchg_spi(0xFF);
} while ((res & 0x80) && --n);
return res; /* Return received response */
}
/*--------------------------------------------------------------------------
Public FatFs Functions (wrapped in user_diskio.c)
---------------------------------------------------------------------------*/
//The following functions are defined as inline because they aren't the functions that
//are passed to FatFs - they are wrapped by autogenerated (non-inline) cubemx template
//code.
//If you do not wish to use cubemx, remove the "inline" from these functions here
//and in the associated .h
/*-----------------------------------------------------------------------*/
/* Initialize disk drive */
/*-----------------------------------------------------------------------*/
inline DSTATUS USER_SPI_initialize (
BYTE drv /* Physical drive number (0) */
)
{
BYTE n, cmd, ty, ocr[4];
if (drv != 0) return STA_NOINIT; /* Supports only drive 0 */
//assume SPI already init init_spi(); /* Initialize SPI */
if (Stat & STA_NODISK) return Stat; /* Is card existing in the soket? */
FCLK_SLOW();
for (n = 10; n; n--) xchg_spi(0xFF); /* Send 80 dummy clocks */
ty = 0;
if (send_cmd(CMD0, 0) == 1) { /* Put the card SPI/Idle state */
SPI_Timer_On(1000); /* Initialization timeout = 1 sec */
if (send_cmd(CMD8, 0x1AA) == 1) { /* SDv2? */
for (n = 0; n < 4; n++) ocr[n] = xchg_spi(0xFF); /* Get 32 bit return value of R7 resp */
if (ocr[2] == 0x01 && ocr[3] == 0xAA) { /* Is the card supports vcc of 2.7-3.6V? */
while (SPI_Timer_Status() && send_cmd(ACMD41, 1UL << 30)) ; /* Wait for end of initialization with ACMD41(HCS) */
if (SPI_Timer_Status() && send_cmd(CMD58, 0) == 0) { /* Check CCS bit in the OCR */
for (n = 0; n < 4; n++) ocr[n] = xchg_spi(0xFF);
ty = (ocr[0] & 0x40) ? CT_SD2 | CT_BLOCK : CT_SD2; /* Card id SDv2 */
}
}
} else { /* Not SDv2 card */
if (send_cmd(ACMD41, 0) <= 1) { /* SDv1 or MMC? */
ty = CT_SD1; cmd = ACMD41; /* SDv1 (ACMD41(0)) */
} else {
ty = CT_MMC; cmd = CMD1; /* MMCv3 (CMD1(0)) */
}
while (SPI_Timer_Status() && send_cmd(cmd, 0)) ; /* Wait for end of initialization */
if (!SPI_Timer_Status() || send_cmd(CMD16, 512) != 0) /* Set block length: 512 */
ty = 0;
}
}
CardType = ty; /* Card type */
despiselect();
if (ty) { /* OK */
FCLK_FAST(); /* Set fast clock */
Stat &= ~STA_NOINIT; /* Clear STA_NOINIT flag */
} else { /* Failed */
Stat = STA_NOINIT;
}
return Stat;
}
/*-----------------------------------------------------------------------*/
/* Get disk status */
/*-----------------------------------------------------------------------*/
inline DSTATUS USER_SPI_status (
BYTE drv /* Physical drive number (0) */
)
{
if (drv) return STA_NOINIT; /* Supports only drive 0 */
return Stat; /* Return disk status */
}
/*-----------------------------------------------------------------------*/
/* Read sector(s) */
/*-----------------------------------------------------------------------*/
inline DRESULT USER_SPI_read (
BYTE drv, /* Physical drive number (0) */
BYTE *buff, /* Pointer to the data buffer to store read data */
DWORD sector, /* Start sector number (LBA) */
UINT count /* Number of sectors to read (1..128) */
)
{
if (drv || !count) return RES_PARERR; /* Check parameter */
if (Stat & STA_NOINIT) return RES_NOTRDY; /* Check if drive is ready */
if (!(CardType & CT_BLOCK)) sector *= 512; /* LBA ot BA conversion (byte addressing cards) */
if (count == 1) { /* Single sector read */
if ((send_cmd(CMD17, sector) == 0) /* READ_SINGLE_BLOCK */
&& rcvr_datablock(buff, 512)) {
count = 0;
}
}
else { /* Multiple sector read */
if (send_cmd(CMD18, sector) == 0) { /* READ_MULTIPLE_BLOCK */
do {
if (!rcvr_datablock(buff, 512)) break;
buff += 512;
} while (--count);
send_cmd(CMD12, 0); /* STOP_TRANSMISSION */
}
}
despiselect();
return count ? RES_ERROR : RES_OK; /* Return result */
}
/*-----------------------------------------------------------------------*/
/* Write sector(s) */
/*-----------------------------------------------------------------------*/
#if _USE_WRITE
inline DRESULT USER_SPI_write (
BYTE drv, /* Physical drive number (0) */
const BYTE *buff, /* Ponter to the data to write */
DWORD sector, /* Start sector number (LBA) */
UINT count /* Number of sectors to write (1..128) */
)
{
if (drv || !count) return RES_PARERR; /* Check parameter */
if (Stat & STA_NOINIT) return RES_NOTRDY; /* Check drive status */
if (Stat & STA_PROTECT) return RES_WRPRT; /* Check write protect */
if (!(CardType & CT_BLOCK)) sector *= 512; /* LBA ==> BA conversion (byte addressing cards) */
if (count == 1) { /* Single sector write */
if ((send_cmd(CMD24, sector) == 0) /* WRITE_BLOCK */
&& xmit_datablock(buff, 0xFE)) {
count = 0;
}
}
else { /* Multiple sector write */
if (CardType & CT_SDC) send_cmd(ACMD23, count); /* Predefine number of sectors */
if (send_cmd(CMD25, sector) == 0) { /* WRITE_MULTIPLE_BLOCK */
do {
if (!xmit_datablock(buff, 0xFC)) break;
buff += 512;
} while (--count);
if (!xmit_datablock(0, 0xFD)) count = 1; /* STOP_TRAN token */
}
}
despiselect();
return count ? RES_ERROR : RES_OK; /* Return result */
}
#endif
/*-----------------------------------------------------------------------*/
/* Miscellaneous drive controls other than data read/write */
/*-----------------------------------------------------------------------*/
#if _USE_IOCTL
inline DRESULT USER_SPI_ioctl (
BYTE drv, /* Physical drive number (0) */
BYTE cmd, /* Control command code */
void *buff /* Pointer to the conrtol data */
)
{
DRESULT res;
BYTE n, csd[16];
DWORD *dp, st, ed, csize;
if (drv) return RES_PARERR; /* Check parameter */
if (Stat & STA_NOINIT) return RES_NOTRDY; /* Check if drive is ready */
res = RES_ERROR;
switch (cmd) {
case CTRL_SYNC : /* Wait for end of internal write process of the drive */
if (spiselect()) res = RES_OK;
break;
case GET_SECTOR_COUNT : /* Get drive capacity in unit of sector (DWORD) */
if ((send_cmd(CMD9, 0) == 0) && rcvr_datablock(csd, 16)) {
if ((csd[0] >> 6) == 1) { /* SDC ver 2.00 */
csize = csd[9] + ((WORD)csd[8] << 8) + ((DWORD)(csd[7] & 63) << 16) + 1;
*(DWORD*)buff = csize << 10;
} else { /* SDC ver 1.XX or MMC ver 3 */
n = (csd[5] & 15) + ((csd[10] & 128) >> 7) + ((csd[9] & 3) << 1) + 2;
csize = (csd[8] >> 6) + ((WORD)csd[7] << 2) + ((WORD)(csd[6] & 3) << 10) + 1;
*(DWORD*)buff = csize << (n - 9);
}
res = RES_OK;
}
break;
case GET_BLOCK_SIZE : /* Get erase block size in unit of sector (DWORD) */
if (CardType & CT_SD2) { /* SDC ver 2.00 */
if (send_cmd(ACMD13, 0) == 0) { /* Read SD status */
xchg_spi(0xFF);
if (rcvr_datablock(csd, 16)) { /* Read partial block */
for (n = 64 - 16; n; n--) xchg_spi(0xFF); /* Purge trailing data */
*(DWORD*)buff = 16UL << (csd[10] >> 4);
res = RES_OK;
}
}
} else { /* SDC ver 1.XX or MMC */
if ((send_cmd(CMD9, 0) == 0) && rcvr_datablock(csd, 16)) { /* Read CSD */
if (CardType & CT_SD1) { /* SDC ver 1.XX */
*(DWORD*)buff = (((csd[10] & 63) << 1) + ((WORD)(csd[11] & 128) >> 7) + 1) << ((csd[13] >> 6) - 1);
} else { /* MMC */
*(DWORD*)buff = ((WORD)((csd[10] & 124) >> 2) + 1) * (((csd[11] & 3) << 3) + ((csd[11] & 224) >> 5) + 1);
}
res = RES_OK;
}
}
break;
case CTRL_TRIM : /* Erase a block of sectors (used when _USE_ERASE == 1) */
if (!(CardType & CT_SDC)) break; /* Check if the card is SDC */
if (USER_SPI_ioctl(drv, MMC_GET_CSD, csd)) break; /* Get CSD */
if (!(csd[0] >> 6) && !(csd[10] & 0x40)) break; /* Check if sector erase can be applied to the card */
dp = buff; st = dp[0]; ed = dp[1]; /* Load sector block */
if (!(CardType & CT_BLOCK)) {
st *= 512; ed *= 512;
}
if (send_cmd(CMD32, st) == 0 && send_cmd(CMD33, ed) == 0 && send_cmd(CMD38, 0) == 0 && wait_ready(30000)) { /* Erase sector block */
res = RES_OK; /* FatFs does not check result of this command */
}
break;
default:
res = RES_PARERR;
}
despiselect();
return res;
}
#endif

View file

@ -0,0 +1,38 @@
/**
******************************************************************************
* @file user_diskio_spi.h
* @brief This file contains the common defines and functions prototypes for
* the user_diskio_spi driver implementation
******************************************************************************
* Portions copyright (C) 2014, ChaN, all rights reserved.
* Portions copyright (C) 2017, kiwih, all rights reserved.
*
* This software is a free software and there is NO WARRANTY.
* No restriction on use. You can use, modify and redistribute it for
* personal, non-profit or commercial products UNDER YOUR RESPONSIBILITY.
* Redistributions of source code must retain the above copyright notice.
*
******************************************************************************
*/
#ifndef _USER_DISKIO_SPI_H
#define _USER_DISKIO_SPI_H
#include "integer.h" //from FatFs middleware library
#include "diskio.h" //from FatFs middleware library
#include "ff_gen_drv.h" //from FatFs middleware library
//we define these as inline because we don't want them to be actual function calls (they get "called" from the cubemx autogenerated user_diskio file)
//we define them as extern because they are defined in a separate .c file to user_diskio.c (which #includes this .h file)
extern DSTATUS USER_SPI_initialize (BYTE pdrv);
extern DSTATUS USER_SPI_status (BYTE pdrv);
extern DRESULT USER_SPI_read (BYTE pdrv, BYTE *buff, DWORD sector, UINT count);
#if _USE_WRITE == 1
extern DRESULT USER_SPI_write (BYTE pdrv, const BYTE *buff, DWORD sector, UINT count);
#endif /* _USE_WRITE == 1 */
#if _USE_IOCTL == 1
extern DRESULT USER_SPI_ioctl (BYTE pdrv, BYTE cmd, void *buff);
#endif /* _USE_IOCTL == 1 */
#endif

File diff suppressed because it is too large Load diff

View file

@ -1,8 +1,8 @@
/*----------------------------------------------------------------------------/
/ FatFs - Generic FAT Filesystem module R0.14b /
/ FatFs - Generic FAT Filesystem module R0.15 /
/-----------------------------------------------------------------------------/
/
/ Copyright (C) 2021, ChaN, all right reserved.
/ Copyright (C) 2022, ChaN, all right reserved.
/
/ FatFs module is an open source software. Redistribution and use of FatFs in
/ source and binary forms, with or without modification, are permitted provided
@ -20,7 +20,7 @@
#ifndef FF_DEFINED
#define FF_DEFINED 86631 /* Revision ID */
#define FF_DEFINED 80286 /* Revision ID */
#ifdef __cplusplus
extern "C" {
@ -131,10 +131,11 @@ extern const char* VolumeStr[FF_VOLUMES]; /* User defied volume ID */
typedef struct {
BYTE fs_type; /* Filesystem type (0:not mounted) */
BYTE pdrv; /* Associated physical drive */
BYTE pdrv; /* Volume hosting physical drive */
BYTE ldrv; /* Logical drive number (used only when FF_FS_REENTRANT) */
BYTE n_fats; /* Number of FATs (1 or 2) */
BYTE wflag; /* win[] flag (b0:dirty) */
BYTE fsi_flag; /* FSINFO flags (b7:disabled, b0:dirty) */
BYTE wflag; /* win[] status (b0:dirty) */
BYTE fsi_flag; /* FSINFO status (b7:disabled, b0:dirty) */
WORD id; /* Volume mount ID */
WORD n_rootdir; /* Number of root directory entries (FAT12/16) */
WORD csize; /* Cluster size [sectors] */
@ -147,9 +148,6 @@ typedef struct {
#if FF_FS_EXFAT
BYTE* dirbuf; /* Directory entry block scratchpad buffer for exFAT */
#endif
#if FF_FS_REENTRANT
FF_SYNC_t sobj; /* Identifier of sync object */
#endif
#if !FF_FS_READONLY
DWORD last_clst; /* Last allocated cluster */
DWORD free_clst; /* Number of free clusters */
@ -163,10 +161,10 @@ typedef struct {
#endif
#endif
DWORD n_fatent; /* Number of FAT entries (number of clusters + 2) */
DWORD fsize; /* Size of an FAT [sectors] */
DWORD fsize; /* Number of sectors per FAT */
LBA_t volbase; /* Volume base sector */
LBA_t fatbase; /* FAT base sector */
LBA_t dirbase; /* Root directory base sector/cluster */
LBA_t dirbase; /* Root directory base sector (FAT12/16) or cluster (FAT32/exFAT) */
LBA_t database; /* Data base sector */
#if FF_FS_EXFAT
LBA_t bitbase; /* Allocation bitmap base sector */
@ -181,7 +179,7 @@ typedef struct {
typedef struct {
FATFS* fs; /* Pointer to the hosting volume of this object */
WORD id; /* Hosting volume mount ID */
WORD id; /* Hosting volume's mount ID */
BYTE attr; /* Object attribute */
BYTE stat; /* Object chain status (b1-0: =0:not contiguous, =2:contiguous, =3:fragmented in this session, b2:sub-directory stretched) */
DWORD sclust; /* Object data start cluster (0:no cluster or root directory) */
@ -250,7 +248,7 @@ typedef struct {
WORD ftime; /* Modified time */
BYTE fattrib; /* File attribute */
#if FF_USE_LFN
TCHAR altname[FF_SFN_BUF + 1];/* Altenative file name */
TCHAR altname[FF_SFN_BUF + 1];/* Alternative file name */
TCHAR fname[FF_LFN_BUF + 1]; /* Primary file name */
#else
TCHAR fname[12 + 1]; /* File name */
@ -298,8 +296,10 @@ typedef enum {
/*--------------------------------------------------------------*/
/* FatFs Module Application Interface */
/*--------------------------------------------------------------*/
/* FatFs module application interface */
FRESULT f_open (FIL* fp, const TCHAR* path, BYTE mode); /* Open or create a file */
FRESULT f_close (FIL* fp); /* Close an open file object */
@ -336,6 +336,8 @@ int f_puts (const TCHAR* str, FIL* cp); /* Put a string to the file */
int f_printf (FIL* fp, const TCHAR* str, ...); /* Put a formatted string to the file */
TCHAR* f_gets (TCHAR* buff, int len, FIL* fp); /* Get a string from the file */
/* Some API fucntions are implemented as macro */
#define f_eof(fp) ((int)((fp)->fptr == (fp)->obj.objsize))
#define f_error(fp) ((fp)->err)
#define f_tell(fp) ((fp)->fptr)
@ -349,38 +351,43 @@ TCHAR* f_gets (TCHAR* buff, int len, FIL* fp); /* Get a string from the fil
/*--------------------------------------------------------------*/
/* Additional user defined functions */
/* Additional Functions */
/*--------------------------------------------------------------*/
/* RTC function */
/* RTC function (provided by user) */
#if !FF_FS_READONLY && !FF_FS_NORTC
DWORD get_fattime (void);
DWORD get_fattime (void); /* Get current time */
#endif
/* LFN support functions */
#if FF_USE_LFN >= 1 /* Code conversion (defined in unicode.c) */
/* LFN support functions (defined in ffunicode.c) */
#if FF_USE_LFN >= 1
WCHAR ff_oem2uni (WCHAR oem, WORD cp); /* OEM code to Unicode conversion */
WCHAR ff_uni2oem (DWORD uni, WORD cp); /* Unicode to OEM code conversion */
DWORD ff_wtoupper (DWORD uni); /* Unicode upper-case conversion */
#endif
/* O/S dependent functions (samples available in ffsystem.c) */
#if FF_USE_LFN == 3 /* Dynamic memory allocation */
void* ff_memalloc (UINT msize); /* Allocate memory block */
void ff_memfree (void* mblock); /* Free memory block */
#endif
/* Sync functions */
#if FF_FS_REENTRANT
int ff_cre_syncobj (BYTE vol, FF_SYNC_t* sobj); /* Create a sync object */
int ff_req_grant (FF_SYNC_t sobj); /* Lock sync object */
void ff_rel_grant (FF_SYNC_t sobj); /* Unlock sync object */
int ff_del_syncobj (FF_SYNC_t sobj); /* Delete a sync object */
#if FF_FS_REENTRANT /* Sync functions */
int ff_mutex_create (int vol); /* Create a sync object */
void ff_mutex_delete (int vol); /* Delete a sync object */
int ff_mutex_take (int vol); /* Lock sync object */
void ff_mutex_give (int vol); /* Unlock sync object */
#endif
/*--------------------------------------------------------------*/
/* Flags and offset address */
/* Flags and Offset Address */
/*--------------------------------------------------------------*/
/* File access mode and open method flags (3rd argument of f_open) */
#define FA_READ 0x01

View file

@ -1,8 +1,8 @@
/*---------------------------------------------------------------------------/
/ FatFs Functional Configurations
/ Configurations of FatFs Module
/---------------------------------------------------------------------------*/
#define FFCONF_DEF 86631 /* Revision ID */
#define FFCONF_DEF 80286 /* Revision ID */
/*---------------------------------------------------------------------------/
/ Function Configurations
@ -25,7 +25,7 @@
/ 3: f_lseek() function is removed in addition to 2. */
#define FF_USE_FIND 2
#define FF_USE_FIND 1
/* This option switches filtered directory read functions, f_findfirst() and
/ f_findnext(). (0:Disable, 1:Enable 2:Enable with matching altname[] too) */
@ -57,9 +57,9 @@
#define FF_USE_STRFUNC 1
#define FF_PRINT_LLI 0
#define FF_PRINT_FLOAT 0
#define FF_STRF_ENCODE 0
#define FF_PRINT_LLI 1
#define FF_PRINT_FLOAT 1
#define FF_STRF_ENCODE 3
/* FF_USE_STRFUNC switches string functions, f_gets(), f_putc(), f_puts() and
/ f_printf().
/
@ -68,7 +68,7 @@
/ 2: Enable with LF-CRLF conversion.
/
/ FF_PRINT_LLI = 1 makes f_printf() support long long argument and FF_PRINT_FLOAT = 1/2
makes f_printf() support floating point argument. These features want C99 or later.
/ makes f_printf() support floating point argument. These features want C99 or later.
/ When FF_LFN_UNICODE >= 1 with LFN enabled, string functions convert the character
/ encoding in it. FF_STRF_ENCODE selects assumption of character encoding ON THE FILE
/ to be read/written via those functions.
@ -113,8 +113,8 @@
*/
#define FF_USE_LFN 1
#define FF_MAX_LFN 255
#define FF_USE_LFN 0
#define FF_MAX_LFN 127
/* The FF_USE_LFN switches the support for LFN (long file name).
/
/ 0: Disable LFN. FF_MAX_LFN has no effect.
@ -170,26 +170,27 @@
/* Number of volumes (logical drives) to be used. (1-10) */
#define FF_STR_VOLUME_ID 2
// #define FF_VOLUME_STRS "S,F,H"
#define FF_STR_VOLUME_ID 1
// #define FF_VOLUME_STRS "SD","SD2"
/* FF_STR_VOLUME_ID switches support for volume ID in arbitrary strings.
/ When FF_STR_VOLUME_ID is set to 1 or 2, arbitrary strings can be used as drive
/ number in the path name. FF_VOLUME_STRS defines the volume ID strings for each
/ logical drives. Number of items must not be less than FF_VOLUMES. Valid
/ characters for the volume ID strings are A-Z, a-z and 0-9, however, they are
/ compared in case-insensitive. If FF_STR_VOLUME_ID >= 1 and FF_VOLUME_STRS is
/ not defined, a user defined volume string table needs to be defined as:
/ not defined, a user defined volume string table is needed as:
/
/ const char* VolumeStr[FF_VOLUMES] = {"ram","flash","sd","usb",...
*/
#define FF_MULTI_PARTITION 0
/* This option switches support for multiple volumes on the physical drive.
/ By default (0), each logical drive number is bound to the same physical drive
/ number and only an FAT volume found on the physical drive will be mounted.
/ When this function is enabled (1), each logical drive number can be bound to
/ arbitrary physical drive and partition listed in the VolToPart[]. Also f_fdisk()
/ funciton will be available. */
/ function will be available. */
#define FF_MIN_SS 512
@ -237,12 +238,12 @@
#define FF_FS_NORTC 1
#define FF_NORTC_MON 1
#define FF_NORTC_MON 2
#define FF_NORTC_MDAY 1
#define FF_NORTC_YEAR 2020
/* The option FF_FS_NORTC switches timestamp functiton. If the system does not have
/ any RTC function or valid timestamp is not needed, set FF_FS_NORTC = 1 to disable
/ the timestamp function. Every object modified by FatFs will have a fixed timestamp
#define FF_NORTC_YEAR 2024
/* The option FF_FS_NORTC switches timestamp feature. If the system does not have
/ an RTC or valid timestamp is not needed, set FF_FS_NORTC = 1 to disable the
/ timestamp feature. Every object modified by FatFs will have a fixed timestamp
/ defined by FF_NORTC_MON, FF_NORTC_MDAY and FF_NORTC_YEAR in local time.
/ To enable timestamp function (FF_FS_NORTC = 0), get_fattime() function need to be
/ added to the project to read current time form real-time clock. FF_NORTC_MON,
@ -252,7 +253,7 @@
#define FF_FS_NOFSINFO 0
/* If you need to know correct free space on the FAT32 volume, set bit 0 of this
/ option, and f_getfree() function at first time after volume mount will force
/ option, and f_getfree() function at the first time after volume mount will force
/ a full FAT scan. Bit 1 controls the use of last allocated cluster number.
/
/ bit0=0: Use free cluster count in the FSINFO if available.
@ -274,26 +275,21 @@
/ lock control is independent of re-entrancy. */
/* #include <somertos.h> // O/S definitions */
#define FF_FS_REENTRANT 0
#define FF_FS_TIMEOUT 1000
#define FF_SYNC_t HANDLE
/* The option FF_FS_REENTRANT switches the re-entrancy (thread safe) of the FatFs
/ module itself. Note that regardless of this option, file access to different
/ volume is always re-entrant and volume control functions, f_mount(), f_mkfs()
/ and f_fdisk() function, are always not re-entrant. Only file/directory access
/ to the same volume is under control of this function.
/ to the same volume is under control of this featuer.
/
/ 0: Disable re-entrancy. FF_FS_TIMEOUT and FF_SYNC_t have no effect.
/ 0: Disable re-entrancy. FF_FS_TIMEOUT have no effect.
/ 1: Enable re-entrancy. Also user provided synchronization handlers,
/ ff_req_grant(), ff_rel_grant(), ff_del_syncobj() and ff_cre_syncobj()
/ function, must be added to the project. Samples are available in
/ option/syscall.c.
/ ff_mutex_create(), ff_mutex_delete(), ff_mutex_take() and ff_mutex_give()
/ function, must be added to the project. Samples are available in ffsystem.c.
/
/ The FF_FS_TIMEOUT defines timeout period in unit of time tick.
/ The FF_SYNC_t defines O/S dependent sync object type. e.g. HANDLE, ID, OS_EVENT*,
/ SemaphoreHandle_t and etc. A header file for O/S definitions needs to be
/ included somewhere in the scope of ff.h. */
/ The FF_FS_TIMEOUT defines timeout period in unit of O/S time tick.
*/

275
src/fatfs/ffconf_new.h Normal file
View file

@ -0,0 +1,275 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* FatFs - FAT file system module configuration file R0.11 (C)ChaN, 2015
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under Ultimate Liberty license
* SLA0044, the "License"; You may not use this file except in compliance with
* the License. You may obtain a copy of the License at:
* www.st.com/SLA0044
*
******************************************************************************
*/
/* USER CODE END Header */
#ifndef _FFCONF
#define _FFCONF 32020 /* Revision ID */
/*-----------------------------------------------------------------------------/
/ Additional user header to be used
/-----------------------------------------------------------------------------*/
#include "main.h"
#include "stm32f3xx_hal.h"
/*-----------------------------------------------------------------------------/
/ Functions and Buffer Configurations
/-----------------------------------------------------------------------------*/
#define _FS_TINY 0 /* 0:Normal or 1:Tiny */
/* This option switches tiny buffer configuration. (0:Normal or 1:Tiny)
/ At the tiny configuration, size of the file object (FIL) is reduced _MAX_SS
/ bytes. Instead of private sector buffer eliminated from the file object,
/ common sector buffer in the file system object (FATFS) is used for the file
/ data transfer. */
#define _FS_READONLY 0 /* 0:Read/Write or 1:Read only */
/* This option switches read-only configuration. (0:Read/Write or 1:Read-only)
/ Read-only configuration removes writing API functions, f_write(), f_sync(),
/ f_unlink(), f_mkdir(), f_chmod(), f_rename(), f_truncate(), f_getfree()
/ and optional writing functions as well. */
#define _FS_MINIMIZE 0 /* 0 to 3 */
/* This option defines minimization level to remove some basic API functions.
/
/ 0: All basic functions are enabled.
/ 1: f_stat(), f_getfree(), f_unlink(), f_mkdir(), f_chmod(), f_utime(),
/ f_truncate() and f_rename() function are removed.
/ 2: f_opendir(), f_readdir() and f_closedir() are removed in addition to 1.
/ 3: f_lseek() function is removed in addition to 2. */
#define _USE_STRFUNC 2 /* 0:Disable or 1-2:Enable */
/* This option switches string functions, f_gets(), f_putc(), f_puts() and
/ f_printf().
/
/ 0: Disable string functions.
/ 1: Enable without LF-CRLF conversion.
/ 2: Enable with LF-CRLF conversion. */
#define _USE_FIND 0
/* This option switches filtered directory read feature and related functions,
/ f_findfirst() and f_findnext(). (0:Disable or 1:Enable) */
#define _USE_MKFS 1
/* This option switches f_mkfs() function. (0:Disable or 1:Enable) */
#define _USE_FASTSEEK 1
/* This option switches fast seek feature. (0:Disable or 1:Enable) */
#define _USE_LABEL 0
/* This option switches volume label functions, f_getlabel() and f_setlabel().
/ (0:Disable or 1:Enable) */
#define _USE_FORWARD 0
/* This option switches f_forward() function. (0:Disable or 1:Enable)
/ To enable it, also _FS_TINY need to be set to 1. */
/*-----------------------------------------------------------------------------/
/ Locale and Namespace Configurations
/-----------------------------------------------------------------------------*/
#define _CODE_PAGE 850
/* This option specifies the OEM code page to be used on the target system.
/ Incorrect setting of the code page can cause a file open failure.
/
/ 932 - Japanese Shift_JIS (DBCS, OEM, Windows)
/ 936 - Simplified Chinese GBK (DBCS, OEM, Windows)
/ 949 - Korean (DBCS, OEM, Windows)
/ 950 - Traditional Chinese Big5 (DBCS, OEM, Windows)
/ 1250 - Central Europe (Windows)
/ 1251 - Cyrillic (Windows)
/ 1252 - Latin 1 (Windows)
/ 1253 - Greek (Windows)
/ 1254 - Turkish (Windows)
/ 1255 - Hebrew (Windows)
/ 1256 - Arabic (Windows)
/ 1257 - Baltic (Windows)
/ 1258 - Vietnam (OEM, Windows)
/ 437 - U.S. (OEM)
/ 720 - Arabic (OEM)
/ 737 - Greek (OEM)
/ 775 - Baltic (OEM)
/ 850 - Multilingual Latin 1 (OEM)
/ 858 - Multilingual Latin 1 + Euro (OEM)
/ 852 - Latin 2 (OEM)
/ 855 - Cyrillic (OEM)
/ 866 - Russian (OEM)
/ 857 - Turkish (OEM)
/ 862 - Hebrew (OEM)
/ 874 - Thai (OEM, Windows)
/ 1 - ASCII (No extended character. Valid for only non-LFN configuration.) */
#define _USE_LFN 0 /* 0 to 3 */
#define _MAX_LFN 255 /* Maximum LFN length to handle (12 to 255) */
/* The _USE_LFN option switches the LFN feature.
/
/ 0: Disable LFN feature. _MAX_LFN has no effect.
/ 1: Enable LFN with static working buffer on the BSS. Always NOT thread-safe.
/ 2: Enable LFN with dynamic working buffer on the STACK.
/ 3: Enable LFN with dynamic working buffer on the HEAP.
/
/ When enable the LFN feature, Unicode handling functions (option/unicode.c) must
/ be added to the project. The LFN working buffer occupies (_MAX_LFN + 1) * 2 bytes.
/ When use stack for the working buffer, take care on stack overflow. When use heap
/ memory for the working buffer, memory management functions, ff_memalloc() and
/ ff_memfree(), must be added to the project. */
#define _LFN_UNICODE 0 /* 0:ANSI/OEM or 1:Unicode */
/* This option switches character encoding on the API. (0:ANSI/OEM or 1:Unicode)
/ To use Unicode string for the path name, enable LFN feature and set _LFN_UNICODE
/ to 1. This option also affects behavior of string I/O functions. */
#define _STRF_ENCODE 3
/* When _LFN_UNICODE is 1, this option selects the character encoding on the file to
/ be read/written via string I/O functions, f_gets(), f_putc(), f_puts and f_printf().
/
/ 0: ANSI/OEM
/ 1: UTF-16LE
/ 2: UTF-16BE
/ 3: UTF-8
/
/ When _LFN_UNICODE is 0, this option has no effect. */
#define _FS_RPATH 0 /* 0 to 2 */
/* This option configures relative path feature.
/
/ 0: Disable relative path feature and remove related functions.
/ 1: Enable relative path feature. f_chdir() and f_chdrive() are available.
/ 2: f_getcwd() function is available in addition to 1.
/
/ Note that directory items read via f_readdir() are affected by this option. */
/*---------------------------------------------------------------------------/
/ Drive/Volume Configurations
/----------------------------------------------------------------------------*/
#define _VOLUMES 1
/* Number of volumes (logical drives) to be used. */
/* USER CODE BEGIN Volumes */
#define _STR_VOLUME_ID 0 /* 0:Use only 0-9 for drive ID, 1:Use strings for drive ID */
#define _VOLUME_STRS "RAM","NAND","CF","SD1","SD2","USB1","USB2","USB3"
/* _STR_VOLUME_ID option switches string volume ID feature.
/ When _STR_VOLUME_ID is set to 1, also pre-defined strings can be used as drive
/ number in the path name. _VOLUME_STRS defines the drive ID strings for each
/ logical drives. Number of items must be equal to _VOLUMES. Valid characters for
/ the drive ID strings are: A-Z and 0-9. */
/* USER CODE END Volumes */
#define _MULTI_PARTITION 0 /* 0:Single partition, 1:Multiple partition */
/* This option switches multi-partition feature. By default (0), each logical drive
/ number is bound to the same physical drive number and only an FAT volume found on
/ the physical drive will be mounted. When multi-partition feature is enabled (1),
/ each logical drive number is bound to arbitrary physical drive and partition
/ listed in the VolToPart[]. Also f_fdisk() funciton will be available. */
#define _MIN_SS 512 /* 512, 1024, 2048 or 4096 */
#define _MAX_SS 512 /* 512, 1024, 2048 or 4096 */
/* These options configure the range of sector size to be supported. (512, 1024,
/ 2048 or 4096) Always set both 512 for most systems, all type of memory cards and
/ harddisk. But a larger value may be required for on-board flash memory and some
/ type of optical media. When _MAX_SS is larger than _MIN_SS, FatFs is configured
/ to variable sector size and GET_SECTOR_SIZE command must be implemented to the
/ disk_ioctl() function. */
#define _USE_TRIM 0
/* This option switches ATA-TRIM feature. (0:Disable or 1:Enable)
/ To enable Trim feature, also CTRL_TRIM command should be implemented to the
/ disk_ioctl() function. */
#define _FS_NOFSINFO 0 /* 0,1,2 or 3 */
/* If you need to know correct free space on the FAT32 volume, set bit 0 of this
/ option, and f_getfree() function at first time after volume mount will force
/ a full FAT scan. Bit 1 controls the use of last allocated cluster number.
/
/ bit0=0: Use free cluster count in the FSINFO if available.
/ bit0=1: Do not trust free cluster count in the FSINFO.
/ bit1=0: Use last allocated cluster number in the FSINFO if available.
/ bit1=1: Do not trust last allocated cluster number in the FSINFO.
*/
/*---------------------------------------------------------------------------/
/ System Configurations
/----------------------------------------------------------------------------*/
#define _FS_NORTC 0
#define _NORTC_MON 6
#define _NORTC_MDAY 4
#define _NORTC_YEAR 2015
/* The _FS_NORTC option switches timestamp feature. If the system does not have
/ an RTC function or valid timestamp is not needed, set _FS_NORTC to 1 to disable
/ the timestamp feature. All objects modified by FatFs will have a fixed timestamp
/ defined by _NORTC_MON, _NORTC_MDAY and _NORTC_YEAR.
/ When timestamp feature is enabled (_FS_NORTC == 0), get_fattime() function need
/ to be added to the project to read current time form RTC. _NORTC_MON,
/ _NORTC_MDAY and _NORTC_YEAR have no effect.
/ These options have no effect at read-only configuration (_FS_READONLY == 1). */
#define _FS_LOCK 2 /* 0:Disable or >=1:Enable */
/* The _FS_LOCK option switches file lock feature to control duplicated file open
/ and illegal operation to open objects. This option must be 0 when _FS_READONLY
/ is 1.
/
/ 0: Disable file lock feature. To avoid volume corruption, application program
/ should avoid illegal open, remove and rename to the open objects.
/ >0: Enable file lock feature. The value defines how many files/sub-directories
/ can be opened simultaneously under file lock control. Note that the file
/ lock feature is independent of re-entrancy. */
#define _FS_REENTRANT 0 /* 0:Disable or 1:Enable */
#define _FS_TIMEOUT 1000 /* Timeout period in unit of time ticks */
#define _SYNC_t NULL
/* The _FS_REENTRANT option switches the re-entrancy (thread safe) of the FatFs
/ module itself. Note that regardless of this option, file access to different
/ volume is always re-entrant and volume control functions, f_mount(), f_mkfs()
/ and f_fdisk() function, are always not re-entrant. Only file/directory access
/ to the same volume is under control of this feature.
/
/ 0: Disable re-entrancy. _FS_TIMEOUT and _SYNC_t have no effect.
/ 1: Enable re-entrancy. Also user provided synchronization handlers,
/ ff_req_grant(), ff_rel_grant(), ff_del_syncobj() and ff_cre_syncobj()
/ function, must be added to the project. Samples are available in
/ option/syscall.c.
/
/ The _FS_TIMEOUT defines timeout period in unit of time tick.
/ The _SYNC_t defines O/S dependent sync object type. e.g. HANDLE, ID, OS_EVENT*,
/ SemaphoreHandle_t and etc.. */
#define _WORD_ACCESS 0 /* 0 or 1 */
/* The _WORD_ACCESS option is an only platform dependent option. It defines
/ which access method is used to the word data on the FAT volume.
/
/ 0: Byte-by-byte access. Always compatible with all platforms.
/ 1: Word access. Do not choose this unless under both the following conditions.
/
/ * Address misaligned memory access is always allowed to ALL instructions.
/ * Byte order on the memory is little-endian.
/
/ If it is the case, _WORD_ACCESS can also be set to 1 to reduce code size.
/ Following table shows allowable settings of some processor types.
/
/ ARM7TDMI 0 ColdFire 0 V850E 0
/ Cortex-M3 0 Z80 0/1 V850ES 0/1
/ Cortex-M0 0 x86 0/1 TLCS-870 0/1
/ AVR 0/1 RX600(LE) 0/1 TLCS-900 0/1
/ AVR32 0 RL78 0 R32C 0
/ PIC18 0/1 SH-2 0 M16C 0/1
/ PIC24 0 H8S 0 MSP430 0
/ PIC32 0 H8/300H 0 8051 0/1
*/
#endif /* _FFCONF */

View file

@ -1,170 +1,208 @@
/*------------------------------------------------------------------------*/
/* Sample Code of OS Dependent Functions for FatFs */
/* (C)ChaN, 2018 */
/* A Sample Code of User Provided OS Dependent Functions for FatFs */
/*------------------------------------------------------------------------*/
#include "ff.h"
#if FF_USE_LFN == 3 /* Dynamic memory allocation */
#if FF_USE_LFN == 3 /* Use dynamic memory allocation */
/*------------------------------------------------------------------------*/
/* Allocate a memory block */
/* Allocate/Free a Memory Block */
/*------------------------------------------------------------------------*/
#include <stdlib.h> /* with POSIX API */
void* ff_memalloc ( /* Returns pointer to the allocated memory block (null if not enough core) */
UINT msize /* Number of bytes to allocate */
)
{
return malloc(msize); /* Allocate a new memory block with POSIX API */
return malloc((size_t)msize); /* Allocate a new memory block */
}
/*------------------------------------------------------------------------*/
/* Free a memory block */
/*------------------------------------------------------------------------*/
void ff_memfree (
void* mblock /* Pointer to the memory block to free (nothing to do if null) */
void* mblock /* Pointer to the memory block to free (no effect if null) */
)
{
free(mblock); /* Free the memory block with POSIX API */
free(mblock); /* Free the memory block */
}
#endif
#if FF_FS_REENTRANT /* Mutal exclusion */
/*------------------------------------------------------------------------*/
/* Create a Synchronization Object */
/* Definitions of Mutex */
/*------------------------------------------------------------------------*/
/* This function is called in f_mount() function to create a new
/ synchronization object for the volume, such as semaphore and mutex.
/ When a 0 is returned, the f_mount() function fails with FR_INT_ERR.
*/
//const osMutexDef_t Mutex[FF_VOLUMES]; /* Table of CMSIS-RTOS mutex */
#define OS_TYPE 0 /* 0:Win32, 1:uITRON4.0, 2:uC/OS-II, 3:FreeRTOS, 4:CMSIS-RTOS */
int ff_cre_syncobj ( /* 1:Function succeeded, 0:Could not create the sync object */
BYTE vol, /* Corresponding volume (logical drive number) */
FF_SYNC_t* sobj /* Pointer to return the created sync object */
)
{
/* Win32 */
*sobj = CreateMutex(NULL, FALSE, NULL);
return (int)(*sobj != INVALID_HANDLE_VALUE);
#if OS_TYPE == 0 /* Win32 */
#include <windows.h>
static HANDLE Mutex[FF_VOLUMES + 1]; /* Table of mutex handle */
/* uITRON */
// T_CSEM csem = {TA_TPRI,1,1};
// *sobj = acre_sem(&csem);
// return (int)(*sobj > 0);
#elif OS_TYPE == 1 /* uITRON */
#include "itron.h"
#include "kernel.h"
static mtxid Mutex[FF_VOLUMES + 1]; /* Table of mutex ID */
/* uC/OS-II */
// OS_ERR err;
// *sobj = OSMutexCreate(0, &err);
// return (int)(err == OS_NO_ERR);
#elif OS_TYPE == 2 /* uc/OS-II */
#include "includes.h"
static OS_EVENT *Mutex[FF_VOLUMES + 1]; /* Table of mutex pinter */
/* FreeRTOS */
// *sobj = xSemaphoreCreateMutex();
// return (int)(*sobj != NULL);
#elif OS_TYPE == 3 /* FreeRTOS */
#include "FreeRTOS.h"
#include "semphr.h"
static SemaphoreHandle_t Mutex[FF_VOLUMES + 1]; /* Table of mutex handle */
/* CMSIS-RTOS */
// *sobj = osMutexCreate(&Mutex[vol]);
// return (int)(*sobj != NULL);
}
/*------------------------------------------------------------------------*/
/* Delete a Synchronization Object */
/*------------------------------------------------------------------------*/
/* This function is called in f_mount() function to delete a synchronization
/ object that created with ff_cre_syncobj() function. When a 0 is returned,
/ the f_mount() function fails with FR_INT_ERR.
*/
int ff_del_syncobj ( /* 1:Function succeeded, 0:Could not delete due to an error */
FF_SYNC_t sobj /* Sync object tied to the logical drive to be deleted */
)
{
/* Win32 */
return (int)CloseHandle(sobj);
/* uITRON */
// return (int)(del_sem(sobj) == E_OK);
/* uC/OS-II */
// OS_ERR err;
// OSMutexDel(sobj, OS_DEL_ALWAYS, &err);
// return (int)(err == OS_NO_ERR);
/* FreeRTOS */
// vSemaphoreDelete(sobj);
// return 1;
/* CMSIS-RTOS */
// return (int)(osMutexDelete(sobj) == osOK);
}
/*------------------------------------------------------------------------*/
/* Request Grant to Access the Volume */
/*------------------------------------------------------------------------*/
/* This function is called on entering file functions to lock the volume.
/ When a 0 is returned, the file function fails with FR_TIMEOUT.
*/
int ff_req_grant ( /* 1:Got a grant to access the volume, 0:Could not get a grant */
FF_SYNC_t sobj /* Sync object to wait */
)
{
/* Win32 */
return (int)(WaitForSingleObject(sobj, FF_FS_TIMEOUT) == WAIT_OBJECT_0);
/* uITRON */
// return (int)(wai_sem(sobj) == E_OK);
/* uC/OS-II */
// OS_ERR err;
// OSMutexPend(sobj, FF_FS_TIMEOUT, &err));
// return (int)(err == OS_NO_ERR);
/* FreeRTOS */
// return (int)(xSemaphoreTake(sobj, FF_FS_TIMEOUT) == pdTRUE);
/* CMSIS-RTOS */
// return (int)(osMutexWait(sobj, FF_FS_TIMEOUT) == osOK);
}
/*------------------------------------------------------------------------*/
/* Release Grant to Access the Volume */
/*------------------------------------------------------------------------*/
/* This function is called on leaving file functions to unlock the volume.
*/
void ff_rel_grant (
FF_SYNC_t sobj /* Sync object to be signaled */
)
{
/* Win32 */
ReleaseMutex(sobj);
/* uITRON */
// sig_sem(sobj);
/* uC/OS-II */
// OSMutexPost(sobj);
/* FreeRTOS */
// xSemaphoreGive(sobj);
/* CMSIS-RTOS */
// osMutexRelease(sobj);
}
#elif OS_TYPE == 4 /* CMSIS-RTOS */
#include "cmsis_os.h"
static osMutexId Mutex[FF_VOLUMES + 1]; /* Table of mutex ID */
#endif
/*------------------------------------------------------------------------*/
/* Create a Mutex */
/*------------------------------------------------------------------------*/
/* This function is called in f_mount function to create a new mutex
/ or semaphore for the volume. When a 0 is returned, the f_mount function
/ fails with FR_INT_ERR.
*/
int ff_mutex_create ( /* Returns 1:Function succeeded or 0:Could not create the mutex */
int vol /* Mutex ID: Volume mutex (0 to FF_VOLUMES - 1) or system mutex (FF_VOLUMES) */
)
{
#if OS_TYPE == 0 /* Win32 */
Mutex[vol] = CreateMutex(NULL, FALSE, NULL);
return (int)(Mutex[vol] != INVALID_HANDLE_VALUE);
#elif OS_TYPE == 1 /* uITRON */
T_CMTX cmtx = {TA_TPRI,1};
Mutex[vol] = acre_mtx(&cmtx);
return (int)(Mutex[vol] > 0);
#elif OS_TYPE == 2 /* uC/OS-II */
OS_ERR err;
Mutex[vol] = OSMutexCreate(0, &err);
return (int)(err == OS_NO_ERR);
#elif OS_TYPE == 3 /* FreeRTOS */
Mutex[vol] = xSemaphoreCreateMutex();
return (int)(Mutex[vol] != NULL);
#elif OS_TYPE == 4 /* CMSIS-RTOS */
osMutexDef(cmsis_os_mutex);
Mutex[vol] = osMutexCreate(osMutex(cmsis_os_mutex));
return (int)(Mutex[vol] != NULL);
#endif
}
/*------------------------------------------------------------------------*/
/* Delete a Mutex */
/*------------------------------------------------------------------------*/
/* This function is called in f_mount function to delete a mutex or
/ semaphore of the volume created with ff_mutex_create function.
*/
void ff_mutex_delete ( /* Returns 1:Function succeeded or 0:Could not delete due to an error */
int vol /* Mutex ID: Volume mutex (0 to FF_VOLUMES - 1) or system mutex (FF_VOLUMES) */
)
{
#if OS_TYPE == 0 /* Win32 */
CloseHandle(Mutex[vol]);
#elif OS_TYPE == 1 /* uITRON */
del_mtx(Mutex[vol]);
#elif OS_TYPE == 2 /* uC/OS-II */
OS_ERR err;
OSMutexDel(Mutex[vol], OS_DEL_ALWAYS, &err);
#elif OS_TYPE == 3 /* FreeRTOS */
vSemaphoreDelete(Mutex[vol]);
#elif OS_TYPE == 4 /* CMSIS-RTOS */
osMutexDelete(Mutex[vol]);
#endif
}
/*------------------------------------------------------------------------*/
/* Request a Grant to Access the Volume */
/*------------------------------------------------------------------------*/
/* This function is called on enter file functions to lock the volume.
/ When a 0 is returned, the file function fails with FR_TIMEOUT.
*/
int ff_mutex_take ( /* Returns 1:Succeeded or 0:Timeout */
int vol /* Mutex ID: Volume mutex (0 to FF_VOLUMES - 1) or system mutex (FF_VOLUMES) */
)
{
#if OS_TYPE == 0 /* Win32 */
return (int)(WaitForSingleObject(Mutex[vol], FF_FS_TIMEOUT) == WAIT_OBJECT_0);
#elif OS_TYPE == 1 /* uITRON */
return (int)(tloc_mtx(Mutex[vol], FF_FS_TIMEOUT) == E_OK);
#elif OS_TYPE == 2 /* uC/OS-II */
OS_ERR err;
OSMutexPend(Mutex[vol], FF_FS_TIMEOUT, &err));
return (int)(err == OS_NO_ERR);
#elif OS_TYPE == 3 /* FreeRTOS */
return (int)(xSemaphoreTake(Mutex[vol], FF_FS_TIMEOUT) == pdTRUE);
#elif OS_TYPE == 4 /* CMSIS-RTOS */
return (int)(osMutexWait(Mutex[vol], FF_FS_TIMEOUT) == osOK);
#endif
}
/*------------------------------------------------------------------------*/
/* Release a Grant to Access the Volume */
/*------------------------------------------------------------------------*/
/* This function is called on leave file functions to unlock the volume.
*/
void ff_mutex_give (
int vol /* Mutex ID: Volume mutex (0 to FF_VOLUMES - 1) or system mutex (FF_VOLUMES) */
)
{
#if OS_TYPE == 0 /* Win32 */
ReleaseMutex(Mutex[vol]);
#elif OS_TYPE == 1 /* uITRON */
unl_mtx(Mutex[vol]);
#elif OS_TYPE == 2 /* uC/OS-II */
OSMutexPost(Mutex[vol]);
#elif OS_TYPE == 3 /* FreeRTOS */
xSemaphoreGive(Mutex[vol]);
#elif OS_TYPE == 4 /* CMSIS-RTOS */
osMutexRelease(Mutex[vol]);
#endif
}
#endif /* FF_FS_REENTRANT */

View file

@ -1,13 +1,13 @@
/*------------------------------------------------------------------------*/
/* Unicode handling functions for FatFs R0.13+ */
/* Unicode Handling Functions for FatFs R0.13 and Later */
/*------------------------------------------------------------------------*/
/* This module will occupy a huge memory in the .rodata section when the */
/* FatFs is configured for LFN with DBCS. If the system has a Unicode */
/* library for the code conversion, this module should be modified to use */
/* it to avoid silly memory consumption. */
/*------------------------------------------------------------------------*/
/* This module will occupy a huge memory in the .const section when the /
/ FatFs is configured for LFN with DBCS. If the system has any Unicode /
/ utilitiy for the code conversion, this module should be modified to use /
/ that function to avoid silly memory consumption. /
/-------------------------------------------------------------------------*/
/*
/ Copyright (C) 2014, ChaN, all right reserved.
/ Copyright (C) 2022, ChaN, all right reserved.
/
/ FatFs module is an open source software. Redistribution and use of FatFs in
/ source and binary forms, with or without modification, are permitted provided
@ -25,7 +25,7 @@
#include "ff.h"
#if FF_USE_LFN /* This module will be blanked if non-LFN configuration */
#if FF_USE_LFN != 0 /* This module will be blanked if in non-LFN configuration */
#define MERGE2(a, b) a ## b
#define CVTBL(tbl, cp) MERGE2(tbl, cp)
@ -15214,8 +15214,8 @@ static const WCHAR uc869[] = { /* CP869(Greek 2) to Unicode conversion table */
/*------------------------------------------------------------------------*/
/* OEM <==> Unicode conversions for static code page configuration */
/* SBCS fixed code page */
/* OEM <==> Unicode Conversions for Static Code Page Configuration with */
/* SBCS Fixed Code Page */
/*------------------------------------------------------------------------*/
#if FF_CODE_PAGE != 0 && FF_CODE_PAGE < 900
@ -15267,8 +15267,8 @@ WCHAR ff_oem2uni ( /* Returns Unicode character in UTF-16, zero on error */
/*------------------------------------------------------------------------*/
/* OEM <==> Unicode conversions for static code page configuration */
/* DBCS fixed code page */
/* OEM <==> Unicode Conversions for Static Code Page Configuration with */
/* DBCS Fixed Code Page */
/*------------------------------------------------------------------------*/
#if FF_CODE_PAGE >= 900
@ -15346,7 +15346,7 @@ WCHAR ff_oem2uni ( /* Returns Unicode character in UTF-16, zero on error */
/*------------------------------------------------------------------------*/
/* OEM <==> Unicode conversions for dynamic code page configuration */
/* OEM <==> Unicode Conversions for Dynamic Code Page Configuration */
/*------------------------------------------------------------------------*/
#if FF_CODE_PAGE == 0
@ -15458,7 +15458,7 @@ WCHAR ff_oem2uni ( /* Returns Unicode character in UTF-16, zero on error */
/*------------------------------------------------------------------------*/
/* Unicode up-case conversion */
/* Unicode Up-case Conversion */
/*------------------------------------------------------------------------*/
DWORD ff_wtoupper ( /* Returns up-converted code point */
@ -15590,4 +15590,4 @@ DWORD ff_wtoupper ( /* Returns up-converted code point */
}
#endif /* #if FF_USE_LFN */
#endif /* #if FF_USE_LFN != 0 */

95
src/fatfs/toolbox_bdev.c Normal file
View file

@ -0,0 +1,95 @@
/**
* @file toolbox_bdev.h
* @author your name (you@domain.com)
* @brief Connector module to allow FatFS to use Foenix Toolkit block devices
* @version 0.1
* @date 2024-07-06
*
* @copyright Copyright (c) 2024
*
*/
#include "log_level.h"
#define DEFAULT_LOG_LEVEL LOG_ERROR
#include <stdio.h>
#include <ctype.h>
#include "log.h"
#include "toolbox_bdev.h"
#include "constants.h"
#include "errors.h"
#include "dev/block.h"
/**
* @brief Convert Toolkit Block Device result codes to FatFS result codes
*
* @param result Toolkit result code
* @return DRESULT a corresponding result code
*/
static DRESULT bdev_to_fatfs(short result) {
if (result < 0) {
switch(result) {
case DEV_WRITEPROT:
return RES_WRPRT;
case ERR_NOT_READY:
return RES_NOTRDY;
case ERR_BAD_ARGUMENT:
return RES_PARERR;
default:
return RES_ERROR;
}
}
return RES_OK;
}
DSTATUS disk_initialize(BYTE pdrv) {
return (DSTATUS)bdev_init(pdrv);
}
DSTATUS disk_status(BYTE pdrv) {
DSTATUS result = (DSTATUS)bdev_status(pdrv);
INFO1("disk_status: %02X", result);
return result;
}
static void sector_dump(uint8_t * buffer, int count) {
char char_buffer[17];
printf("Sector:\n");
short index = 0;
for (int i = 0; i < count; i++) {
char c = buffer[i];
if ((i & 0xf) == 0) {
printf("\n");
}
printf("%02X ", c);
}
}
DRESULT disk_read(BYTE pdrv, BYTE* buff, LBA_t sector, UINT count) {
short result = bdev_read(pdrv, sector, buff, 512 * count);
INFO2("disk_read: sector #%u result %d", sector, result);
// sector_dump(buff, 512);
return bdev_to_fatfs(result);
}
DRESULT disk_write(BYTE pdrv, const BYTE* buff, LBA_t sector, UINT count) {
short result = bdev_write(pdrv, sector, buff, 512 * count);
INFO2("disk_write: sector #%u result %d", sector, result);
return bdev_to_fatfs(result);
}
DRESULT disk_ioctl(BYTE pdrv, BYTE cmd, void* buff) {
short result = bdev_ioctrl(pdrv, cmd, buff, 0);
INFO1("disk_ioctl: %d", result);
return bdev_to_fatfs(result);
}

86
src/fatfs/toolbox_bdev.h Normal file
View file

@ -0,0 +1,86 @@
/**
* @file toolbox_bdev.h
* @author your name (you@domain.com)
* @brief Connector module to allow FatFS to use Foenix Toolkit block devices
* @version 0.1
* @date 2024-07-06
*
* @copyright Copyright (c) 2024
*
*/
#ifndef __toolbox_bdev_h__
#define __toolbox_bdev_h__
#include "ff.h"
#ifdef __cplusplus
extern "C" {
#endif
/* Status of Disk Functions */
typedef BYTE DSTATUS;
/* Results of Disk Functions */
typedef enum {
RES_OK = 0, /* 0: Successful */
RES_ERROR, /* 1: R/W Error */
RES_WRPRT, /* 2: Write Protected */
RES_NOTRDY, /* 3: Not Ready */
RES_PARERR /* 4: Invalid Parameter */
} DRESULT;
/*---------------------------------------*/
/* Prototypes for disk control functions */
DSTATUS disk_initialize (BYTE pdrv);
DSTATUS disk_status (BYTE pdrv);
DRESULT disk_read (BYTE pdrv, BYTE* buff, LBA_t sector, UINT count);
DRESULT disk_write (BYTE pdrv, const BYTE* buff, LBA_t sector, UINT count);
DRESULT disk_ioctl (BYTE pdrv, BYTE cmd, void* buff);
/* Disk Status Bits (DSTATUS) */
#define STA_NOINIT 0x01 /* Drive not initialized */
#define STA_NODISK 0x02 /* No medium in the drive */
#define STA_PROTECT 0x04 /* Write protected */
/* Command code for disk_ioctrl fucntion */
/* Generic command (Used by FatFs) */
#define CTRL_SYNC 0 /* Complete pending write process (needed at FF_FS_READONLY == 0) */
#define GET_SECTOR_COUNT 1 /* Get media size (needed at FF_USE_MKFS == 1) */
#define GET_SECTOR_SIZE 2 /* Get sector size (needed at FF_MAX_SS != FF_MIN_SS) */
#define GET_BLOCK_SIZE 3 /* Get erase block size (needed at FF_USE_MKFS == 1) */
#define CTRL_TRIM 4 /* Inform device that the data on the block of sectors is no longer used (needed at FF_USE_TRIM == 1) */
/* Generic command (Not used by FatFs) */
#define CTRL_POWER 5 /* Get/Set power status */
#define CTRL_LOCK 6 /* Lock/Unlock media removal */
#define CTRL_EJECT 7 /* Eject media */
#define CTRL_FORMAT 8 /* Create physical format on the media */
/* MMC/SDC specific ioctl command */
#define MMC_GET_TYPE 10 /* Get card type */
#define MMC_GET_CSD 11 /* Get CSD */
#define MMC_GET_CID 12 /* Get CID */
#define MMC_GET_OCR 13 /* Get OCR */
#define MMC_GET_SDSTAT 14 /* Get SD status */
#define ISDIO_READ 55 /* Read data form SD iSDIO register */
#define ISDIO_WRITE 56 /* Write data to SD iSDIO register */
#define ISDIO_MRITE 57 /* Masked write data to SD iSDIO register */
/* ATA/CF specific ioctl command */
#define ATA_GET_REV 20 /* Get F/W revision */
#define ATA_GET_MODEL 21 /* Get model name */
#define ATA_GET_SN 22 /* Get serial number */
#ifdef __cplusplus
}
#endif
#endif

View file

@ -1,14 +0,0 @@
/*
* Definitions for access to the SDC controller
*/
#ifndef __SDC_C256_H
#define __SDC_C256_H
#include <stdint.h>
#define SDC_BASE ((volatile uint8_t *)0xf01d00)
// TODO: fill out with the actual registers
#endif

View file

@ -0,0 +1,30 @@
/*
* Definitions for access to the SDC controller using the SPI interface
*/
#ifndef __SDC_SPI_H
#define __SDC_SPI_H
#include <stdint.h>
/**
* @brief Structure to manage the SPI driven SDC ports
*
*/
typedef struct s_sdc_spi {
uint8_t ctrl;
uint8_t data;
} t_sdc_spi, *p_sdc_spi;
#define SDx_CS 0x01 // 1 = Enable
#define SDx_SLOW 0x02 // 1 = Slow 400Khz, 0 = 25Mhz
#define SDx_BUSY 0x80 // 1 = Busy
#define SD0_REG ((volatile __attribute__((far)) p_sdc_spi)0xf016a0)
#define SD1_REG ((volatile __attribute__((far)) p_sdc_spi)0xf01d80)
#define SD0_STAT (*(volatile __far uint8_t *)0xf016a0)
#define SD0_STAT_CD 0x40 // When 1 = No Card, 0 = Card is Present
#define SD0_STAT_WP 0x80 // When 0 = Writeable, 1 = Card is Protected
#endif

View file

@ -47,9 +47,10 @@
* Block devices
*/
#define BDEV_SDC 0
#define BDEV_FDC 1
#define BDEV_HDC 2
#define BDEV_SD0 0
#define BDEV_SD1 1
#define BDEV_FDC 2
#define BDEV_HDC 3
/*
* Channel devices
@ -63,4 +64,13 @@
#define CDEV_MIDI 5
#define CDEV_FILE 6
/*
* Block Device IOCRTRL commands
*/
#define IOCTRL_CTRL_SYNC 0 /* Complete pending write process (needed at FF_FS_READONLY == 0) */
#define IOCTRL_GET_SECTOR_COUNT 1 /* Get media size (needed at FF_USE_MKFS == 1) */
#define IOCTRL_GET_SECTOR_SIZE 2 /* Get sector size (needed at FF_MAX_SS != FF_MIN_SS) */
#define IOCTRL_GET_BLOCK_SIZE 3 /* Get erase block size (needed at FF_USE_MKFS == 1) */
#endif

View file

@ -49,5 +49,6 @@
#define ERR_NOT_SUPPORTED -37 /* Device does not support the file or operation */
#define ERR_BAD_ARGUMENT -38 /* An invalid argument was provided */
#define ERR_MEDIA_CHANGE -39 /* Removable media has changed */
#define ERR_NOT_READY -40 /* Media device is not ready */
#endif

View file

@ -112,12 +112,13 @@ typedef struct s_sys_info {
typedef struct s_dev_block {
short number; // The number of the device (assigned by registration)
char * name; // The name of the device
FUNC_V_2_S init; // short init() -- Initialize the device
FUNC_LBS_2_S read; // short read(long lba, byte * buffer, short size) -- Read a block from the device
FUNC_LcBS_2_S write; // short write(long lba, byte * buffer, short size) -- Write a block to the device
FUNC_V_2_S status; // short status() -- Get the status of the device
FUNC_V_2_S flush; // short flush() -- Ensure that any pending writes to teh device have been completed
FUNC_SBS_2_S ioctrl; // short ioctrl(short command, byte * buffer, short size)) -- Issue a control command to the device
void * data; // Device-specific data block
short (*init)(struct s_dev_block *); // Initialize the device
short (*read)(struct s_dev_block *, long lba, uint8_t * buffer, short size); // Read a block from the device
short (*write)(struct s_dev_block *, long lba, const uint8_t * buffer, short size); // Write a block to the device
short (*status)(struct s_dev_block *); // Get the status of the device
short (*flush)(struct s_dev_block *); // Ensure that any pending writes to the device have been completed
short (*ioctrl)(struct s_dev_block *, short command, unsigned char * buffer, short size); // Issue a control command to the device
} t_dev_block, *p_dev_block;
/*

View file

@ -6,6 +6,7 @@
#define DEFAULT_LOG_LEVEL LOG_INFO
#define LOG_CHANNEL LOG_CHANNEL_UART0
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
@ -35,6 +36,7 @@
#elif MODEL == MODEL_FOENIX_F256 || MODEL == MODEL_FOENIX_F256K || MODEL == MODEL_FOENIX_F256K2
#include "dev/txt_f256.h"
#include "dev/kbd_f256k.h"
#include "dev/sdc_f256.h"
#endif
#include "syscalls.h"
@ -214,11 +216,11 @@ void initialize() {
}
#endif
// if ((res = sdc_install())) {
// ERROR1("FAILED: SDC driver installation %d", res);
// } else {
// INFO("SDC driver installed.");
// }
if ((res = sdc_install())) {
ERROR1("FAILED: SDC driver installation %d", res);
} else {
INFO("SDC driver installed.");
}
#if HAS_FLOPPY
if ((res = fdc_install())) {
@ -266,17 +268,41 @@ void initialize() {
// log(LOG_INFO, "Serial ports initialized.");
// }
// if ((res = fsys_init())) {
// log_num(LOG_ERROR, "FAILED: file system initialization", res);
// } else {
// INFO("File system initialized.");
// }
if ((res = fsys_init())) {
log_num(LOG_ERROR, "FAILED: file system initialization", res);
} else {
INFO("File system initialized.");
}
}
char dec2hex(uint8_t x) {
char * hex_digits = "0123456789ABCDEF";
t_file_info dir;
uint8_t buffer[512];
return hex_digits[x & 0x0f];
void dump(uint8_t * buffer, int count) {
char char_buffer[17];
printf("\n");
short index = 0;
for (int i = 0; i < count; i++) {
if ((i > 0) && (i % 16 == 0)) {
index = 0;
char_buffer[16] = 0;
printf(" %s\n", char_buffer);
} else if (i > 0) {
char c = buffer[i];
printf("%02X ", c);
if (isalpha(c) || isdigit(c)) {
char_buffer[index++] = c;
} else {
char_buffer[index++] = '.';
}
}
}
printf(" %s\n", char_buffer);
}
int main(int argc, char * argv[]) {
@ -286,17 +312,52 @@ int main(int argc, char * argv[]) {
initialize();
kbd_init();
printf("\n> ");
chan_ioctrl(0, CON_IOCTRL_ECHO_OFF, 0, 0);
while (!kbd_break()) {
char c = chan_read_b(0);
if (c != 0) {
chan_write_b(0, c);
}
short fd = fsys_opendir("0:/");
if (fd > -1) {
INFO("fsys_opendir");
short result = fsys_readdir(fd, &dir);
while (result == 0) {
if (dir.name[0] != 0) {
printf("%s\n", dir.name);
} else {
break;
}
printf("\nDone.\n");
result = fsys_readdir(fd, &dir);
}
fsys_closedir(fd);
INFO("fsys_closedir");
} else {
ERROR1("Could not open directory %d", fd);
}
// kbd_init();
// printf("\n> ");
// chan_ioctrl(0, CON_IOCTRL_ECHO_OFF, 0, 0);
// while (!kbd_break()) {
// char c = chan_read_b(0);
// if (c != 0) {
// chan_write_b(0, c);
// }
// }
// INFO("bdev_init");
// short status = bdev_init(BDEV_SD0);
// if (status) {
// ERROR1("bdev_init returned %d", status);
// }
// INFO("bdev_read");
// status = bdev_read(BDEV_SD0, 97, buffer, 512);
// if (status < 512) {
// ERROR1("bdev_read returned %d", status);
// }
// INFO("Read.");
// dump(buffer, 512);
// printf("\nDone.\n");
// Attempt to start up the user code
// log(LOG_INFO, "Looking for user startup code:");