
Foenix/MCP
A Simple, Portable Operating System

for the Foenix Line of Computers

version 1.0-alpha.x

Overview

Warning
Please do not attempt to install a ENCOM SHV series digitizing laser on any Foenix computer
running the Foenix/MCP operating system. Early versions of the MCP displayed erratic
behavior when given access to a digitizing laser. Neither the author of Foenix/MCP nor
ENCOM will be responsible for any unexpected behavior experienced by users.

Copyright Information
Foenix/MCP and all code except for the FatFS file system library are published under the BSD
3 Clause License. Please see the source code for the license terms.

The Foenix/MCP file system is provided by the FatFS file system, which is covered under its
own license. For information about the author of FatFS and its license terms, please see the
Foenix/MCP source code.

Devices
Devices on the Foenix computers fall into one of two main categories: channel devices, and
block devices.

Channel Devices
Channel devices are predominantly sequential, byte oriented devices. They are essentially
byte streams. A program can read or write a series of bytes from or to the device. A channel
can have the notion of a “cursor” which represents the point where a read or write will
happen. Examples of channel devices include the console, the serial ports, and files.

Currently, the only fully supported channel devices are open files, the keyboard, and the
screen. In the future, there should be full support for the serial ports, the parallel port, and the
MIDI ports. Channel devices are assigned as follows:

Number Device
0 Main console (keyboard and screen A)
1 Secondary console (keyboard and screen B)
2 Serial Port #1
3 Serial Port #2
4 Parallel Port
5 MIDI Ports
6 Files

By default, channels 0 and 1 are open automatically to devices 0 and 1 respectively at boot
time.

Block Devices
Block devices organize their data into blocks of bytes. A block may be read from or written to
a block device, and blocks maybe accessed in any order desired. Examples of block devices
include the IDE/PATA hard drive, the SD card, and the floppy drive.

Out of the box, there are three block devices supported by Foenix/MCP:

Number Device
0 SD card
1 Floppy drive (if available)
2 IDE (PATA) hard drive

Files Channels
Files represent a special channel pseudo-device. Although files are stored on block devices,
they may be open as file channels, which may be accessed like a channel device. There is a
special file channel driver, which converts channel reads and writes on a file to the
appropriate block calls. Access to these file channels is managed in part through the file
system calls listed below.

Command Line Utility

Commands

Settings
In addition to commands, the command line utility provides a number of “settings.” Settings
may be changed with the SET command and viewed with the GET command (if they are
readable). Settings will, in general, have some sort of side-effect by being set. They can turn
on or off particular functions, change colors, etc.

System Calls
On the Motorola 68000 series computers, system calls are made through the TRAP #15
instruction. The function number (which determines which call to make) is passed in the D0
register. Parameters are passed in the data registers: D1 for the first parameter, D2 for the
second, and so on. Results are returned in the D0 register, and may be 8-bits, 16-bits, or 32-bits
in length.

Note that even pointers are passed using the data registers, when address registers might
make more sense. This was done to keep the bindings of the system calls more
straightforward. If this turns out to be a problem, later versions of the FoenixMCP may use
the stack instead.

For many system calls, the return value is simply a status indicator: 0 represents success, and
a negative number indicates an error condition, with the value specifying what error. For
those functions that return a value (e.g. sys_chan_read), the data returned will be 0 or
positive for success, and a negative number for an error condition. An exception would be
sys_int_register, which must return a pointer and has no error condition.

The system calls are broken out into five major blocks:

• Core: these are the most essential calls for the operating system. Mostly, this is where
interrupts are managed.

• Channel: these are the calls for working with channels and channel devices.

• Block: these are the calls for accessing block devices at a low level. Most user programs
will not need these calls

• File System: these are the calls for accessing files at a higher level

• Process and Memory: There’s only one here at the moment, but this block will support
running programs and managing memory.

• Miscellaneous: these are calls I could not figure out a better place for

Core Calls
Number Name Description
0x00 sys_exit Exit the user program and return the command line
0x01 Reserved
0x02 sys_int_register Register a function as an interrupt handler
0x03 sys_int_enable Enable a particular interrupt
0x04 sys_int_disable Disable a particular interrupt
0x05 sys_int_enable_all Enable all maskable interrupts
0x06 sys_int_disable_all Disable all maskable interrupts
0x07 sys_int_clear Clear an interrupt’s pending flag
0x08 sys_int_pending Return true if an interrupt’s pending flag is set

Function 0x00 sys_exit

Description This function ends the currently running program and returns control to the
command line. It takes a single short argument, which is the result code that
should be passed back to the kernel. This function does not return.

Prototype void sys_exit(short result)

C Example sys_exit(0); // Quit the program with result 0

Assembly clr.w d0 ; Function 0: sys_exit
clr.w d1 ; Result code: 0
trap #15

Function 0x02 sys_int_register

Description Registers a function as an interrupt handler. An interrupt handler is a function
which takes and returns no arguments and will be run in at an elevated
privilege level during the interrupt handling cycle.

The first argument is the number of the interrupt to handle, the second
argument is a pointer to the interrupt handler to register. Registering a null
pointer as an interrupt handler will “deregister” the old handler.

The function returns the handler that was previously registered.

Prototype p_int_handler sys_int_register(short int_num,
 p_int_handler handler)

C Example void sof_handler() { … }

sys_int_register(0, sof_handler);

Assembly move.w #$02,d0 ; Function sys_int_register
clr.w d1 ; 0 for Channel A SOF interrupt
lea.l sof_handler,d2 ; Pointer to the handler
trap #15

Function 0x03 sys_int_enable

Description This function enables a particular interrupt at the level of the interrupt
controller. The argument passed is the number of the interrupt to enable. Note
that interrupts that are enabled at this level will still be disabled, if interrupts
are disabled globally by sys_int_disable_all.

Prototype void sys_int_enable(short int_num)

C Example sys_int_enable(0); // Enable the Channel A SOF interrupt

Assembly move.w #$03,d0 ; Function: sys_int_enable
clr.w d1 ; 0 is Channel A SOF interrupt
trap #15

Function 0x04 sys_int_disable

Description This function disables a particular interrupt at the level of the interrupt
controller. The argument passed is the number of the interrupt to disable.

Prototype void sys_int_disable(short int_num)

C Example sys_int_disable(0); // Disable the SOF interrupt

Assembly move.w #$04,d0 ; Function: sys_int_disable
clr.w d1 ; 0 is Channel A SOF interrupt
trap #15

Function 0x05 sys_int_enable_all

Description This function enables all maskable interrupts at the CPU level. It returns a
system-dependent code that represents the previous level of interrupt
masking.

Prototype short sys_int_enable_all()

C Example sys_int_enable_all();

Assembly move.w #$05,d0 ; Function: sys_int_enable_all
trap #15

Function 0x06 sys_int_disable_all

Description This function disables all maskable interrupts at the CPU level. It returns a
system-dependent code that represents the previous level of interrupt
masking.

Prototype short sys_int_disable_all()

C Example sys_int_disable_all();

Assembly move.w 0x06,d0 ; Function: sys_int_disable_all
trap #15

Function 0x05 sys_int_enable_all

Description This function enables all maskable interrupts at the CPU level. It returns a
system-dependent code that represents the previous level of interrupt
masking.

Prototype short sys_int_enable_all()

C Example sys_int_enable_all();

Assembly move.w #$05,d0 ; Function: sys_int_enable_all
trap #15

Function 0x06 sys_int_clear

Description This function acknowledges the processing of an interrupt by clearing its
pending flag in the interrupt controller.

Prototype void sys_int_clear(short int_num)

C Example sys_int_clear(1); // Clear the Channel A SOL interrupt

Assembly move.w #$05,d0 ; Function: sys_int_clear
move.w #1,d1 ; Channel A SOL interrupt
trap #15

Function 0x06 sys_int_pending

Description This function acknowledges the processing of an interrupt by clearing its
pending flag in the interrupt controller.

Prototype short sys_int_clear(short int_num)

C Example sys_int_clear(1); // Clear the Channel A SOL interrupt

Assembly move.w #$05,d0 ; Function: sys_int_clear
move.w #1,d1 ; Channel A SOL interrupt
trap #15

Channel Calls
Number Name Description
0x10 sys_chan_read Read bytes from a channel
0x11 sys_chan_read_b Read a byte from a channel
0x12 sys_chan_read_line Read a line of text from a channel
0x13 sys_chan_write Write bytes to a channel
0x14 sys_chan_write_b Write a byte to a channel
0x15 sys_chan_flush Ensure any pending writes are completed
0x16 sys_chan_seek Set the position of the read/write cursor in the channel
0x17 sys_chan_status Get the status of the channel
0x18 sys_chan_ioctrl Send a command to the channel (channel dependent)
0x19 sys_chan_register Register a channel device driver
0x1A sys_text_setsizes Configure the console for the display resolution

Function 0x10 sys_chan_read

Description Read bytes from a channel and fill a buffer with them, given the number of the
channel and the size of the buffer. Returns the number of bytes read.

Prototype short sys_chan_read(short channel,
 unsigned char * buffer, short size)

C Example short c = …; // The channel number
unsigned char buffer[128];
short n = sys_chan_read(c, buffer, 128);

Assembly move.w #$10,d0 ; Function: sys_chan_read
move.w chan,d1 ; Channel number
lea.l buffer,d2 ; Address of buffer
move.w #128,d3 ; Size of buffer
trap #15

Function 0x11 sys_chan_read_b

Description Read a single byte from the channel. Returns the byte, or 0 if none are
available.

Prototype unsigned char sys_chan_read_b(short channel)

C Example short c = …; // The channel number
unsigned char b = sys_chan_read_b(c);

Assembly move.w #$11,d0 ; Function: sys_chan_read
move.w chan,d1 ; Channel number
trap #15
; Byte in d0

Function 0x12 sys_chan_read_line

Description Read a line of text from a channel (terminated by a newline character or by the
end of the buffer). Returns the number of bytes read.

Prototype short sys_chan_read_line(short channel,
 unsigned char * buffer, short size)

C Example short c = …; // The channel number
unsigned char buffer[128];
short n = sys_chan_read_line(c, buffer, 128);

Assembly move.w #$12,d0 ; Function: sys_chan_read_line
move.w chan,d1 ; Channel number
lea.l buffer,d2 ; Address of buffer
move.w #128,d3 ; Size of buffer
trap #15

Function 0x13 sys_chan_write

Description Write bytes from a buffer to a channel, given the number of the channel and
the size of the buffer. Returns the number of bytes written.

Prototype short sys_chan_write(short channel,
 unsigned char * buffer, short size)

C Example short c = …; // The channel number
unsigned char buffer[128];
// ...
short n = sys_chan_write(c, buffer, 128);

Assembly move.w #$13,d0 ; Function: sys_chan_write
move.w chan,d1 ; Channel number
lea.l buffer,d2 ; Address of buffer
move.w #128,d3 ; Size of buffer
trap #15

Function 0x14 sys_chan_write_b

Description Write a single byte to the channel.

Prototype short sys_chan_write_b(short channel, unsigned char b)

C Example short c = …; // The channel number
sys_chan_read_b(c, 0x41);

Assembly move.w #$14,d0 ; Function: sys_chan_write_b
move.w chan,d1 ; Channel number
move.b #$41,d2 ; The byte to write
trap #15

Function 0x15 sys_chan_flush

Description Ensure any pending writes to a channel are completed.

Prototype short sys_chan_flush(short channel)

C Example short c = …; // The channel number
sys_chan_flush(c);

Assembly move.w #$15,d0 ; Function: sys_chan_flush
move.w chan,d1 ; Channel number
trap #15

Function 0x16 sys_chan_seek

Description Set the position of the input/output cursor. This function may not be honored
by a given channel as not all channels are “seekable.” In addition to the usual
channel parameter, the function takes two other parameters:

• position = the new position for the cursor

• base = whether the position is absolute (0), or relative to the current
position (1).

Prototype short sys_chan_seek(short channel,
 long position,
 short base)

C Example short c = …; // The channel number
sys_chan_seek(c, -10, 1); // Move the point back 10 bytes

Assembly move.w #$16,d0 ; Function: sys_chan_seek
move.w chan,d1 ; Channel number
move.l #$FFFFFFFF,d2 ; Position: -1
move.w #1,d3 ; Base: relative
trap #15

Function 0x17 sys_chan_status

Description Gets the status of the channel. The meaning of the status bits is channel-

specific, but four bits are recommended as standard:

• 0x01: The channel has reached the end of its data

• 0x02: The channel has encountered an error

• 0x04: The channel has data that can be readable

• 0x08: The channel can accept data

Prototype short sys_chan_status(short channel)

C Example short c = …; // The channel number
sys_chan_status(c);

Assembly move.w #$17,d0 ; Function: sys_chan_status
move.w chan,d1 ; Channel number
trap #15

Function 0x18 sys_chan_ioctrl

Description Send a command to a channel. The mapping of commands and their actions
are channel-specific. The return value is also channel and command-specific. In
addition to the channel number, the function takes three arguments:

• command: the number of the command to execute

• buffer: an array of bytes to serve as additional data for the command
(may be null)

• size: the number of bytes in the buffer

Prototype short sys_chan_ioctrl(short channel,
 short command,
 unsigned char * buffer,
 short size)

C Example short c = …; // The channel number
short cmd = …; // The command
short r = sys_chan_status(c, cmd, 0, 0); // Send simple command

Assembly move.w #$18,d0 ; Function: sys_chan_ioctrl
move.w chan,d1 ; Channel number
move.w #1,d2 ; Command 1
move.l #0,d3 ; Null buffer
move.w #0,d4 ; Buffer is empty
trap #15
; Result is in D0

Function 0x19 sys_chan_register

Description Register a device driver for a channel device. A device driver consists of a
structure that specifies the name and number of the device as well as the
various handler functions that implement the channel calls on a channel for
that device.

See the section “Extending the System” below for more information.

Prototype short sys_chan_register(struct s_dev_chan *device)

C Example struct s_dev_chan dev;
short r = sys_chan_register(&dev); // Register the driver

Assembly move.w #$19,d0 ; Function: sys_chan_register
lea.l dev,d1 ; Device descriptor
trap #15

Block Calls
Number Name Description
0x20 sys_bdev_getblock Read a block from the block device
0x21 sys_bdev_writeblock Write a block to a block device
0x22 sys_bdev_flush Ensure any pending writes are completed
0x23 sys_bdev_status Get the status of the block device
0x24 sys_bdev_ioctrl Send a command to the block device (device dependent)
0x25 sys_bdev_register Register a block device driver

Function 0x20 sys_bdev_getblock

Description Read a block from a block device. Returns the number of bytes read.

In addition the number of the block device, this function takes three
arguments:

• lba: the logical block address of the block to read

• buffer: the byte array in which to store the data

• size: the number of bytes in the byte array

Prototype short sys_bdev_getblock(short dev,
 long lba,
 unsigned char * buffer,
 short size)

C Example short bdev = BDEV_HDC; // The device number

unsigned char buffer[128];

// Read the MBR of the hard drive
short n = sys_bdev_getblock(bdev, 0, buffer, 128);

Assembly move.w #$20,d0 ; Function: sys_bdev_getblock
move.w #BDEV_HDC,d1 ; Channel number
clr.l d2 ; LBA: 0 (MBR)
lea.l buffer,d3 ; Address of buffer
move.w #128,d4 ; Size of buffer
trap #15

Function 0x20 sys_bdev_putblock

Description Write a block from a block device. Returns the number of bytes written.

In addition the number of the block device, this function takes three
arguments:

• lba: the logical block address of the block to write

• buffer: the byte array in which to store the data

• size: the number of bytes in the byte array

Prototype short sys_bdev_putblock(short dev,
 long lba,
 unsigned char * buffer,
 short size)

C Example short bdev = BDEV_HDC; // The device number
unsigned char buffer[128];

// Write the MBR of the hard drive
short n = sys_chan_putblock(bdev, 0, buffer, 128);

Assembly move.w #$21,d0 ; Function: sys_bdev_putblock
move.w #BDEV_HDC,d1 ; Channel number
clr.l d2 ; LBA: 0 (MBR)
lea.l buffer,d3 ; Address of buffer
move.w #128,d4 ; Size of buffer
trap #15

Function 0x22 sys_bdev_flush

Description Ensure any pending writes to a block device are completed.

Prototype short sys_bdev_flush(short dev)

C Example short bdev= …; // The device number

sys_bdev_flush(bdev);

Assembly move.w #$22,d0 ; Function: sys_bdev_flush
move.w bdev,d1 ; Device number
trap #15

Function 0x23 sys_bdev_status

Description Gets the status of a block device. The meaning of the status bits is device
specific, but there are two bits that are required in order to support the file
system:

• 0x01: Device has not been initialized yet

• 0x02: Device is present

Prototype short sys_bdev_status(short dev)

C Example short bdev = …; // The channel number
sys_chan_status(bdev);

Assembly move.w #$23,d0 ; Function: sys_bdev_status
move.w bdev,d1 ; Device number
trap #15

Function 0x24 sys_bdev_ioctrl

Description Send a command to a block device. The mapping of commands and their
actions are device-specific. The return value is also device and command-
specific. In addition to the device number, the function takes three arguments:

• command: the number of the command to execute

• buffer: an array of bytes to serve as additional data for the command
(may be null)

• size: the number of bytes in the buffer

Four commands should be supported by all devices:

• GET_SECTOR_COUNT (1): Returns the number of physical sectors on
the device

• GET_SECTOR_SIZE (2): Returns the size of a physical sector in bytes

• GET_BLOCK_SIZE (3): Returns the block size of the device. Really only
relevant for flash devices and only needed by FatFS

• GET_DRIVE_INFO (4): Returns the identification of the drive

Prototype short sys_bdev_ioctrl(short channel,
 short command,
 unsigned char * buffer,
 short size)

C Example short dev = …; // The device number
short cmd = …; // The command
short r = sys_bdev_status(dev, cmd, 0, 0); // Send simple
command

Assembly move.w #$24,d0 ; Function: sys_bdev_ioctrl
move.w bdev,d1 ; Channel number
move.w #1,d2 ; Command 1
move.l #0,d3 ; Null buffer
move.w #0,d4 ; Buffer is empty
trap #15
; Result is in D0

Function 0x25 sys_bdev_register

Description Register a device driver for a block device. A device driver consists of a
structure that specifies the name and number of the device as well as the
various handler functions that implement the block device calls for that device.

See the section “Extending the System” below for more information.

Prototype short sys_bdev_register(struct s_dev_block *device)

C Example struct s_dev_block dev;
short r = sys_bdev_register(&dev); // Register the driver

Assembly move.w #$25,d0 ; Function: sys_chan_register
lea.l dev,d1 ; Device descriptor
trap #15

File System Calls
Number Name Description
0x30 sys_fsys_open Open a file
0x31 sys_fsys_close Close a file
0x32 sys_fsys_opendir Open a directory
0x33 sys_fsys_closedir Close a directory
0x34 sys_fsys_readdir Read a directory entry
0x35 sys_fsys_findfirst Find the first entry in a directory matching a pattern
0x36 sys_fsys_findnext Find the next entry in a directory matching a pattern

0x37 sys_fsys_delete Delete a file
0x38 sys_fsys_rename Rename a file
0x39 sys_fsys_mkdir Create a directory
0x3A sys_fsys_load Load a file into memory
0x3B sys_fsys_save Save a block of memory to a file
0x3C sys_proc_run Load and run an executable binary file
0x3D sys_fsys_register_loader Register a file loader

Function 0x30 sys_fsys_open

Description Attempt to open a file in the file system for reading or writing. Two arguments
are required:

• path: the path to the file to open

• mode: flags indicating how the file should be opened:

◦ 0x01: Read

◦ 0x02: Write

◦ 0x04: Create if new

◦ 0x08: Always create

◦ 0x10: Open file if existing, otherwise create

◦ 0x20: Open for append

Returns a channel number associated with the file. If the returned number is
negative, there was an error opening the file.

Prototype short sys_fsys_open(const char * path
 short mode)

C Example short chan = sys_fsys_open(“hello.txt”, 0x01);
if (chan > 0) {
 // File is open for reading
} else {
 // File was not open… chan has the error number
}

Assembly move.w #30,d0 ; Function: sys_fsys_open
lea path,d1 ; Path…
move.w #$01,d2 ; Mode = 1 (read existing)
trap #15
; Channel number will be in d0

Function 0x31 sys_fsys_close

Description Close a file that was previously opened, given its channel number. If there
were writes done on the channel, those writes will be committed to the block
device holding the file.

Prototype void sys_fsys_close(short chan);

C Example short chan = sys_fsys_open(…);
// …
sys_fsys_close(chan);

Assembly move.w #$31,d0 ; Function: sys_fsys_close
move.w (chan),d1 ; Channel number for the file
trap #15

Function 0x32 sys_fsys_opendir

Description Open a directory on a volume for reading, given its path.

Returns a directory handle number on success, or a negative number on
failure.

Prototype short sys_fsys_opendir(const char *path);

C Example short dir = sys_fsys_opendir(“/hd0/System”);
if (dir > 0) {
 // dir can be used for reading the directory entries
} else {
 // There was an error… error number in dir
}

Assembly move.w #$32,d0 ; Function: sys_fsys_opendir
lea.l path,d1 ; Path
trap #15
; D0 contains the directory number or an error

Function 0x33 sys_fsys_closedir

Description Close a previously open directory, given its number.

Prototype void sys_fsys_closedir(short dir);

C Example short dir = sys_fsys_opendir(“/hd0/System”);
if (dir > 0) {
 // dir can be used for reading the directory entries
} else {
 // There was an error… error number in dir
}

Assembly move.w #$33,d0 ; Function: sys_fsys_opendir
move.w (dir),d1 ; Directory number
trap #15

Function 0x34 sys_fsys_readdir

Description Given the number of an open directory, and a buffer in which to place the data,
fetch the file information of the next directory entry. (See below for details on
the file_info structure.)

Returns 0 on success, a negative number on failure.

Prototype short sys_fsys_readdir(short dir, struct s_file_info *file);

C Example short dir = sys_fsys_opendir(“/hd0/System”);
if (dir > 0) {
 // dir can be used for reading the directory entries
 struct s_file_info file;
 if (sys_fsys_readdir(dir, &file_info) == 0) {
 // file_info contains information...
 } else {
 // Could not read the file entry...
 }
} else {
 // There was an error… error number in dir
}

Assembly move.w #$34,d0 ; Function: sys_fsys_opendir
move.w (dir),d1 ; Directory number
lea.l file_info,d2 ; Pointer to the file info structure
trap #15

Function 0x35 sys_fsys_findfirst

Description Given the path to a directory to search, a search pattern, and a pointer to a
file_info structure, return the first entry in the directory that matches the
pattern.

Returns a directory handle on success, a negative number if there is an error

Prototype short sys_fsys_findfirst(const char *path,
 const char *pattern,
 struct s_file_info *file);

C Example struct s_file_info file;
short dir = sys_fsys_findfirst(“/hd0/System/”,
 “*.pgx”,
 &file_info);

if (dir == 0) {
 // file_info contains information...
} else {
 // Could not read the file entry...
}

Assembly move.w #$34,d0 ; Function: sys_fsys_findfirst
lea.l path,d1 ; Pointer to path
lea.l pattern,d2 ; Pointer to pattern
lea.l file_info,d3 ; Pointer to the file info structure
trap #15

Function 0x36 sys_fsys_findnext

Description Given the directory handle for a previously open search (from
sys_fsys_findfirst), and a file_info structure, fill out the structure with the file
information of the next file to match the original search pattern.

Returns 0 on success, a negative number if there is an error

Prototype short sys_fsys_findfirst(const char *path,
 const char *pattern,
 struct s_file_info *file);

C Example struct s_file_info file;
short dir = sys_fsys_findfirst(“/hd0/System/”,
 “*.pgx”,
 &file_info);
if (dir == 0) {
 // file_info contains information…

 // Look for the next…
 short result = sys_fsys_findnext(dir, &file_info);
} else {
 // Could not read the file entry...
}

Assembly move.w #$36,d0 ; Function: sys_fsys_findnext
move.w (dir),d1 ; Directory
lea.l file_info,d2 ; Pointer to the file info structure
trap #15

Function 0x37 sys_fsys_delete

Description Delete a file or directory, given its path.

Returns 0 on success, a negative number if there is an error

Prototype short sys_fsys_delete(const char *path);

C Example short result = sys_fsys_delete(“/hd0/test.txt”);

Assembly move.w #$37,d0 ; Function: sys_fsys_delete
lea.l path,d1 ; Path
trap #15

Function 0x38 sys_fsys_rename

Description Rename a file or directory.

Returns 0 on success, a negative number if there is an error

Prototype short sys_fsys_rename(const char *old_path,
 const char *new_name);

C Example short result = sys_fsys_rename(“/hd0/test.txt”, “doc.txt”);

Assembly move.w #$38,d0 ; Function: sys_fsys_delete
lea.l path,d1 ; Old Path
lea.l new_name,d2 ; New Name
trap #15

Function 0x39 sys_fsys_mkdir

Description Create a directory.

Returns 0 on success, a negative number if there is an error

Prototype short sys_fsys_mkdir(const char *path);

C Example short result = sys_fsys_mkdir(“/hd0/Samples”);

Assembly move.w #$39,d0 ; Function: sys_fsys_delete
lea.l path,d1 ; Path
trap #15

Function 0x3A sys_fsys_load

Description Load a file into memory.

Takes three arguments:

• path: the path to the file to load

• destination: the destination address in memory (0 to use the address
in the file)

• start: a pointer to a long to receive the starting address, if the file is an
executable binary.

Returns 0 on success, a negative number if there is an error

Prototype short sys_fsys_load(const char *path,
 long destination,
 long *start);

C Example long start;
short result = sys_fsys_load(“hello.pgx”, 0, &start);

Assembly move.w #$3A,d0 ; Function: sys_fsys_load
lea.l path,d1 ; Path
clr.l d2
lea.l start,d3
trap #15

Function 0x3B sys_fsys_save

Description Not implemented yet.

Prototype

C Example

Assembly

Function 0x3C sys_fsys_register_loader

Description Register a file loader for a binary file type.

A file loader is a function that takes a channel number for a file to load, a long
representing the destination address, and a pointer to a long for the start
address of the program. These last two parameters are the same as are
provided the sys_fsys_load.

The registration function takes two arguments:

• extension: a three character extension to map the file type to the loader

• loader: a pointer to the loading routine.

On success, returns 0. It there is an error in registering the loader, returns a
negative number.

Prototype short sys_fsys_register_loader(const char * extension,
 p_file_loader loader);

C Example short foo_loader(short chan, long destination, long * start) {
 // Load file to destination (if provided)
 // If executable, set start to address to run

 return 0; // If successful
};
// ...
short result = sys_fsys_register_loader(“FOO”, foo_loader);

Assembly move.w #$3C,d0 ; Function: sys_fsys_run
lea.l path,d1 ; Path
clr.w d2 ; argc is 0
clr.l d3 ; argv is null
trap #15

Process and Memory Calls
Number Name Description
0x40 sys_proc_run Load and run an executable file

Function 0x40 sys_proc_run

Description Load and run an executable binary file.

It takes three arguments:

• path: the path to the file to run

• argc: the number of parameters to give to the executable

• argv: an array of strings containing the parameters to give to the
executable

This function will not return on success, since Foenix/MCP is single tasking.
Any return value will be an error condition.

Prototype short sys_proc_run(const char * path,
 int argc,
 char * argv[]);

C Example int argc = 2;
char * argv[] = {
 “hello.pgx”,
 “test”
};
short result = sys_proc_run(“hello.pgx”, argv, argc);

Assembly move.w #$40,d0 ; Function: sys_fsys_run
lea.l path,d1 ; Path
clr.w d2 ; argc is 0
clr.l d3 ; argv is null
trap #15

Miscellaneous Calls
Number Name Description
0x50 sys_time_ticks Get the number of “ticks” since system startup
0x51 sys_time_setrtc Set the date and time in the real time clock
0x52 sys_time_getrtc Get the date and time from the real time clock
0x53 sys_kbd_setlayout Set the keyboard layout translation tables
0x54 sys_err_message Get the error message for a given error number

Function 0x50 sys_time_ticks

Description Returns the number of “ticks” since system startup.

Ticks are being timed by the real time clock chip, which allows for a periodic
interrupt every 976 microseconds, or just a little short of once a millisecond.
This tick counter will therefore serve as a reasonable approximation to a
millisecond clock, but it should not be used for critical timing.

Prototype long sys_time_ticks()

C Example long ticks = sys_time_ticks();

Assembly move.w #$50,d0 ; Function: sys_time_ticks
trap #15
; Tick count will be a 32 bit number in d0

Function 0x51 sys_time_setrtc

Description Sets the date and time in the real time clock. The date and time information is
provided in an s_time structure (see below).

Prototype void sys_time_setrtc(struct s_time *time)

C Example struct s_time time;
// …
sys_time_setrtc(&time);

Assembly move.w #$51,d0 ; Function: sys_time_setrtc
lea.l time,d1 ; Pointer to s_time structure
trap #15

Function 0x52 sys_time_getrtc

Description Gets the date and time in the real time clock. The date and time information is
provided in an s_time structure (see below).

Prototype void sys_time_getrtc(struct s_time *time)

C Example struct s_time time;
// …
sys_time_getrtc(&time);

Assembly move.w #$52,d0 ; Function: sys_time_getrtc
lea.l time,d1 ; Pointer to s_time structure
trap #15

Extending the System
Foenix/MCP is designed to be somewhat extensible. Since it is meant to be small and stay as
much out of the way of the user programs as possible, Foenix/MCP does not have all of the
features that absolutely everyone will want. Therefore, there are four main ways that the user
can extend the capabilities of Foenix/MCP: channel device drivers, block device drivers,
keyboard translation tables, and file loaders.

Channel Device Drivers
Channel device drivers provide the functions needed by Foenix/MCP to support a channel
opened on a device. With some exceptions, each channel system call is routed through the
channel to the correct channel driver function. Channel drivers can be added to the system
using the sys_chan_register call, specifying all of the relevant information about the driver
using a structure:

struct s_dev_chan {
 short number; // Number of the device
 char * name; // Name of the device

 FUNC_V_2_S init; // Initialize the device
 FUNC_CBS_2_S open; // Open a new channel for the device
 FUNC_V_2_S close; // Close a channel
 FUNC_CBS_2_S read; // Read a sequence of bytes from the device
 FUNC_CBS_2_S readline; // Read a line of text from the device
 FUNC_C_2_S read_b; // Read a single byte from the device
 FUNC_CcBS_2_S write; // Write a sequence of bytes to the device
 FUNC_CB_2_S write_b; // Write a single byte to the device
 FUNC_C_2_S status; // Return the status of the device
 FUNC_C_2_S flush; // Commit any pending writes to the device
 FUNC_CLS_2_S seek; // Set the in/out position of the device
 FUNC_CSBS_2_S ioctrl; // Send commands to the device or driver
};

Most of the fields in the structure are function pointers, which have one of the following
types:

typedef short (*FUNC_V_2_S)();
typedef short (*FUNC_CBS_2_S)(p_channel, unsigned char *, short);
typedef short (*FUNC_C_2_S)(p_channel);
typedef short (*FUNC_CcBS_2_S)(p_channel, const unsigned char *, short);
typedef short (*FUNC_CB_2_S)(p_channel, unsigned char);

typedef short (*FUNC_CLS_2_S)(p_channel, long, short);
typedef short (*FUNC_CSBS_2_S)(p_channel, short, unsigned char *, short);

Where p_channel is a pointer to a channel structure, which maps an open channel to its
device and provides space for the channel driver to store data relevant to that particular
channel. The channel device drivers are passed this structure directly by the channel system
calls, rather than the channel number used by user programs.

struct s_channel {
 short number; // The number of the channel
 short dev; // The number of the channel's device
 unsigned char data[32]; // A block of channel specific data
};

To implement a driver for a new channel device, all of the functions should be implemented
(if a function is not needed, it should still be implemented but return a 0). Then a s_chan_dev
structure should be allocated and filled out, with the number being the number of the device
to support, and name points to a suitable name for the device.

Most of the functions needed are directly mapped to to the channel system calls of the same
name, and they simply perform the operations needed for those calls. Three functions should
be called out for special consideration:

The init function performs initialization functions. It is called once per device. This can be a
place for setting up the device itself or installing interrupt handlers for the device.

The open function is called when the user program opens a channel, after a channel structure
has been allocated for the channel. This is the correct place for setting up a connection for a
specific transaction on the device. This is another point where interrupt handlers might be
installed or turned on, or when specific connection settings are made in the device (like serial
baud rate).

The close function is called when the user program closes a previously opened channel. This
function should perform any house keeping functions needed before the channel is returned
to the kernel’s pool. In particular, if the device buffers writes, any writes that are still pending
should be written to the device.

Block Device Drivers
Block device drivers are used by Foenix/MCP to provide block level access to block devices
like the SD card, floppy drive, and IDE/PATA hard drive. The main use of block device
drivers is the FatFS file system, which is used to provide file channels. Block drivers can be
added to the system in a similar way to channel device drivers by implementing the functions

needed by Foenix/MCP and registering them using the sys_bdev_register call. The
information about the block device is provided through a s_block_dev structure:

struct s_dev_block {
 short number; // The number of the device
 char * name; // The name of the device
 FUNC_V_2_S init; // Initialize the device
 FUNC_LBS_2_S read; // Read a block from the device
 FUNC_LcBS_2_S write; // Write a block to the device
 FUNC_V_2_S status; // Get the status of the device
 FUNC_V_2_S flush; // Ensure that any pending writes are completed
 FUNC_SBS_2_S ioctrl; // Issue a control command to the device
};

The block device structure is similar to the channel device in that it mostly provides the
functions needed to implement the block system calls, using the following function pointer
types:

typedef short (*FUNC_LBS_2_S)(long, unsigned char *, short);
typedef short (*FUNC_LcBS_2_S)(long, const unsigned char *, short);
typedef short (*FUNC_SBS_2_S)(short, unsigned char *, short);
typedef short (*FUNC_LB_2_S)(long, short);

One difference with the channel drivers is that a block driver is tied to its specific device,
therefore the handler functions do not take a device number or other structure.

As before, when registering a driver, the device number is provided in the number field, and a
useful name is provided in name. The init function will be called once to allow the driver to
initialize the device, install interrupt handlers, or perform other functions.

Otherwise, read and write perform the getblock and putblock functions, and take a block
address, a buffer of bytes, and a buffer size as arguments. The status and flush functions
map to the sys_bdev_status and sys_bdev_flush calls. And finally, ioctrl maps to the
sys_bdev_ioctrl function, and takes a command number, a buffer of bytes, and a size of the
buffer as arguments.

Keyboard Translation Tables

File Loaders

Appendix

ANSI Terminal Codes

Keyboard Scan Codes

Useful Data Structures

Time
// Structure used for real time clock functions
struct s_time {
 short year; // Year (0 – 9999)
 short month; // Month (1 = January through 12 = December)
 short day; // Day of month (1 - 31)
 short hour; // Hour (0 – 12 / 23)
 short minute; // Minute (0 - 59)
 short second; // Seconds (0 - 59)
 short is_pm; // For 12-hour clock, 1 = PM
 short is_24hours; // 1 = clock is 24-hours, 0 = clock is 12-hours
}

Directory Entries
// Structure used for directory entry information
struct s_file_info {
 long size; // Size of the file in bytes
 unsigned short date; // Creation date
 unsigned short time; // Creation time
 unsigned char attributes; // Attribute bits
 char name[MAX_PATH_LEN]; // Name of the file (256 bytes)
}

File attribute bits:
0x01 Read only

0x02 Hidden file

0x04 System file

0x10 Directory

0x20 Archive

Error Codes

PGX File Format

PGZ File Format

	Overview
	Warning
	Copyright Information

	Devices
	Channel Devices
	Block Devices
	Files Channels

	Command Line Utility
	Commands
	Settings

	System Calls
	Core Calls
	Channel Calls
	Block Calls
	File System Calls
	Process and Memory Calls
	Miscellaneous Calls

	Extending the System
	Channel Device Drivers
	Block Device Drivers
	Keyboard Translation Tables
	File Loaders
	ANSI Terminal Codes
	Keyboard Scan Codes
	Useful Data Structures
	Time
	Directory Entries

	Error Codes
	PGX File Format
	PGZ File Format

